저번에 올렷던 사차함수 해설 ㅋㅋ
게시글 주소: https://app.orbi.kr/0003277466
이해 안되면 댓글좀 ㅎ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
제 누백이 어느정돈진 어디서봐야되요? 진학사에선 못보나요?
-
설대식 378.2점 15
설대 아무곳이나 지를까 고민중인데 추천받음
-
수능 80(독서 다 맞고 문학에서 다 나감..)인데 김승리 들을까요? 강민철...
-
존맛탱
-
세지vs한지 2
둘중에 뭐가 좋을까요
-
요즘 느끼는거 3
ㅇㅇ가 좋다 이말이 아무런 노력 없이 내 귀까지 들어왔다는거는 이미 꿀을 다 빨았고...
-
노동의가치를저하시키고 사회에는일절도움안됨 그냥갑자기코인하다가 그런생각이듬
-
뭐하지 1
뭐하지뭐하지
-
선착순 2명 16
천덕씩 추합 불가
-
수학 등급컷 어디가 더 정확한가요?
-
불편해죽겠네
-
확통 2컷 투표 0
투표
-
캬캬캬 라이덴 렙업시텨줘야지
-
총괄 선택자수 1명 예정 ㄷㄷ
-
선착순3명 만덕 20
역 지하9층으로 집합
-
ㅈㄱㄴ
-
고전시가 질문 6
굳건한 바위가 아니라 끈으로 형상 했다고 해서 틀린거라고 생각했는데 답지에는 바위가...
-
경희 스나 23
경희 스나 평백 87인데 어떻게 생각함
-
과탐 잘본 경쟁자가 있다면 가산점만큼 차이가 더 벌어집니다.
-
정석준 근황 2
박사학위 땀
-
지르는건 너무 오바겠죠? ㅠㅠ 메가에 영어 들을 사람이 없다는데 영어 어떻게 해야할까요
-
과거의나vs현재의나
-
제도를 많이 만들어야함 대학도 그중 하나가 될 수 있다봄 아이랑 학업 병행하기...
-
현우진T가 매번 게시물 올리실때마다, 그 외에도 고1 수학 강조를 엄청 하시는데...
-
그 와중에 사교육문항 이러네 ㅋㅋㅋㅋㅋㅋ
-
전 고대 원래닉도고경호소인이였고..
-
오르비재미업슴 6
하루종일 등급컷얘기밖에 안해서 안들어오게됨..
-
이거까지 궁금해 할 필요가 있나
-
이거 뭐지??? 9
메가에서 강민철 조정식 현우진 와서 예비고3 설명회 한다길래 예약하긴 했는데 그냥...
-
ㅈㄱㄴ입니다 일요일 의대논술 가는데 흑색팬 지참이라 답안지는 흑색 볼팬으로 쓰는...
-
네에? 올해가 물이니까 작년 기준이니까 컷이높은거맞나요………… 작년기준맞ㅈ쬬?….9
-
펜홀더 휴재라니 0
기구하다
-
막 24세전에 애 3명일시 원하는 대학선택권
-
가채점표에 영어 답 밀려써있어서 심장쫄려 미칠 것 같아ㅏㅏㅏ
-
하면 어디감요? 전 중대갈수도요.. 중앙대가 제 목표대학이였어서 중앙대가너무가고싶음
-
https://youtu.be/UZl_PzjkTiA?si=hBYw-30rRFWiI2l2
-
김범준 대기 0
공통은1000번대 미적은 700번대라는데 스블 전엔 죽어도 안빠지겠죠? 3-4월쯤에...
-
If you 1
너도나와같이 힘들다며 우리 조금 쉽게갈순없을까 있을때 잘할걸그랬어
-
그런거안고자면왠지 평생느껴보지못한 감정을느낄수있을것만같음
-
에휴 시발
-
이런 데 알바 어떰? 10
알바천국에 올라와있길래.. 네이버에 쳐도 안뜨긴하네요.
-
인스타가 디시(DC)화 되고 있다는 말을 안 믿었는데 9
진짜 존나 어질어질하노….
-
운동이나가야지 외모9등급이라인생이불공평하구나.
-
알바 면접 파토내도되나요...? 오라구 하셨는데 좀 무섭고 하기 싫어졌어요 ㅠㅠ 어떡해요?
-
지금 현 23, 24학번들 자퇴 많이 할 것 같나요?? 뭐 반수나 편입 등등으로
-
내년에 할 선택과목 투표하고 가주시면 감사하겠습니다!
-
데코니나 신곡 7
앨범 트레일러에 나왔던 노래 짱이다 달달한 초코우유 두개 한번에 먹는 느낌..
-
잤는데 꿈 꿨음 6
내가 아쿠아리움에서 마이크들고 당년정 부르는 꿈임 안내 데스크 누님이 잘부른다고...
-
글 정리본 없나... 나 하나도 모르는데... 가이드같은거 봐도 뭔말인지...
가장 기본적인걸 설명 안했는데
h(k)가 불연속이 되는 점의 수는 원점에서 그을수있는 접선의 숫자랑 동일해요 ..
(접선에서 위아래로 살짝만 돌려보면 미분가능한 점의수가 바뀌는걸 알수있습니다
즉, 원점에서 그은 접선의 기울기가 h(k)가 불연속인 k값이 되죠. )
그리고 h(k)가 양수에서만 3개 불연속이니까
원점에서 그은 접선의 기울기는 셋다 양수여야하고 기울기가 음수인 접선은 존재해선 안되요
태클걸어서 죄송하지만..ㅎㅎ
'h(k)가 불연속이 되는 점의 수 = 원점에서 그을 수 있는 접선의 숫자' 는 엄밀하지 못한 말이고요,
4차 이하 다항식의 경우에는
'h(k)가 불연속이 되는 점의 수 = 원점에서 그을 수 있는 접선 중 접점에서 짝수중근을 갖는 것의 갯수' 라고 해야 맞을 것 같아요.
(즉, 변곡점에서의 접선이 원점을 지나는 경우라면 h(k)가 불연속이 되지 않을 수도 있을테니까요.)
일반적으로 5차 이상 다항식 혹은 일반적인 미분가능 함수의 그래프에서는 이것조차도 참이 아닐 것 같아요. 접선이 있음에도 h(k)값이 변하지 않고 연속이 되는 경우도 있을 수 있는 거 같아요~
아무튼 이 문제의 경우에는 이렇게 해도 다 참인 것 같아요~ 풀이 꼼꼼히 잘 써주셔서 고맙고요!
뭔가 되게 정리해서 말하기 힘든개념이네여 ..
제가 내놓고 제가 모르다니 ㅠ
ㅎㅎ 겸손하시다는.. 다항함수 경우만 봐도, 차수가 올라가면 함수가 위로 올라갔다 내려갔다 여러번 할 수 있으니까, 동일한 한 (원점 지나는) 직선에 함수가 여러 번 접할 수 있는데, 한 쪽에서는 위로 볼록하면서 접하고, 다른 쪽에서는 아래로 볼록하면서 접하고 이런 식일 수 있어서 그런 거 같아요~ 제가 봐도 정리해서 말하기 참 힘든 거 같아요ㅎㅎ
친절한 풀이 감사합니다. 많은 도움 되었어요^^
네넴 도움 되셨다니 ㅎ
다행이네요
오류있는듯..? n이상수란말이주어져야할듯요.. 제 풀이가 잘못된건지..ㅎ 오른쪽 극소가 더 큰 w자 그리고 첫번째 증가구간 밑과 왼쪽극소값 사이에 원점을 두면 오른쪽극소 주위에서 접할때 기울기 m 왼쪽 극소주위에서 접할때 기울기 16ㄱ기울기가 무한대로 갈때 미분불가능점 2개에서 1개로 변화.. 즉 이렇게 그려도 문제조건에 합당한 그래프발견가능.. 하지만 답은 구할 수 없음 ㅋㅋ
아 참고로 원점은 오른쪽극소보다 아래요
님이 올리신 해설도 기울기 무한대에서 불연속이네요..
n은 당연히 상수라고 생각하고 있었는데 ㅎ
그리고 기울기 무한대일땐 따질 필요 없을듯 합니다
점근선 개념이랑 비슷하다고 생각하는데 ;;
왜나면 h(k)가 k를 정의역으로 하는 함수이고 , 기울기가 무한대일땐 k가 무한대로 간단건데
그건 사실 불연속이라고도 하기 애매한 개념이죠 .. 점근선과 비슷