극값의 정의가 ㅜ
게시글 주소: https://app.orbi.kr/0002864875
f(x)<=f(a) 이면 x=a에서 극대가 된다고 한다.
책에 나와있는 극값의 정의인데요.
등호가 빠져야 하는 것 아닌가요?
글고, 제가 항상 수학공부할 때, 말 하나하나 따져보는
습관이 있는데요. 빨리빨리 진도나가고 싶은데,,
하나 걸리는게 있으면 그걸 확실히 알아내기 전까지 못넘어가요 ㅜㅜ 미치겠네요.
별 쓸데도 없는 내용가지고 시간만 잡아먹는데 어떻게 하면 좋을까요 ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
어차피 과탐쪽 허수들이 더 많이 넘어와서 영향없는 현상인가
-
31일까지안에 공지를 올린다면 말이죠..
-
2등급 베이스에서 배울게 많은 책인가요 ??
-
컴공 쓴 애들 봐라 - 개발자(코딩충) 미래 전망 알려줌 1
코딩충의 미래 1. 취업하는 코딩충 코딩 쌩짜도 모르는 인간들끼리 모여서 AI한테...
-
수학 교과서 전 진지하게 개념 공부에 저게 정말 좋다 생각해요
-
시간 너무 많이 쓰고 싶진 않긴 한데,,
-
수린 게이 갔네 3
-
탭 배경 4
아래 아이콘을 다 빼보려다가 걍 원복..
-
여친구함 선착순 1명
-
9모 잘쳤으면 큰일 났을듯
-
기차타고 자취방 가는데 아직 안 잠..밤낮 돌리려면 커피사고 기차타서 안 자는게 맞나
-
국어 복습 0
국어 복습할 때 인강에서 나갔던 기출 지문 파일을 ebs에서 다운 받아서...
-
차단이 풀리는구나
-
확실히 새르비하던사람 다 자서그런가
-
얘네들 때문에 원서영역 성공이라는 헛된 희망을 품은 적이 있어서임 기대가...
-
이제 고2올라가는 학생이고 고3모고는 2~3정도 뜹니다 주변에서 국어기출은...
-
일어남 0
하 개피곤하네
-
물1 정규반 웰케 표본 높음? 기원쌤이나 이신헉쌤 현강은 복테보면 표본 되게...
-
얼버기 0
어제 메타 어지럽네
-
삼수 미적 확통 4
반수해서 연대썼는데 삼수 고민합니다.. 수학이 제일 아쉽습니다 종합적으로 봤을 때...
-
토트넘 15위네 1
강등권에 더 가깝네 선수 영입해서 한명도 제대로 안터지고
-
사탐 개좇밥들아 3
사탐 어렵냐.. 생지 2~3인데 생지 1가는거보다 사탐 만점 띄우는게 더...
-
이제진짜공부한다 3
쌍사까지 쌋다
-
재수를 해서라도 서성한중경 라인 공대에 가고 싶은 현역입니다 지금 화미생지를 하고...
-
어차피 그에 대한 치료는 길고 지루하고 현학적인데
-
무인시간이라 라면을 안 하네 아
-
그렇게 해서 배경지식을 쌓는거야 그래서 지금 읽고있음
-
[고려대학교 25학번 합격] 합격자를 위한 고려대 25 단톡방을 소개합니다. 0
고려대 25학번 합격자를 위한 고려대 클루x노크 오픈채팅방을 소개합니다. 24학번...
-
친구할수있음?
-
더 안되는거 같다 문제 풀다가 막히면 고민하다가 멍때리는 것은 아닌가 자꾸 의식하고...
-
나 진성 이과(사문함)라서 나무위키 공부법도 하기시른데
-
첫 날 계획은 무계획이라 큰일이에요
-
왜 자꾸 난독증같지 글 여러번 읽어야 겨우 이해하는데....... 국어 때문에 죽고싶9나......
-
믓찌노
-
25학년도 6/9/수능 "독서 0틀"
-
이거왜이러는거냐
-
좋은 아침이어요 13
다행히 수술이 필요할정도는 아니라고 하시네요
-
윤석열 5
지지자들은 뇌가 없나 지둔 늘려줘서 빠는건가
-
임정환t 1
Limit 끝나고 개념 복습하고 바로 검더텅 들어가나요 아님 Impact까지 하고 들어가나요?
-
다 저장하고 계획짤때 봐야지
-
언제부터 받나요??
-
작년보다 4점이 오르냐 ㅋㅋ
-
파 마늘 파마 늘
-
여캐일러 투척 7
화2 정복 8일차 세이아 실장 기념
-
언미영화생 100 98 1 79 81 이러면 대치 시대 반배정 어떻게 되나요?
미분했을때 a중심으로 기울기가 +에서-로바뀌거나 그반대면 극값같는거 맞는것같은데요;;
그책이름이뭐에요? 아니뭐 그냥 궁금해서요 ㅎ
수학적인 엄밀한 정의는 적으신 내용이 맞습니다. 즉,
[정의] 어떤 δ > 0 이 존재하여, (a-δ, a+δ) 위에서 f(x) ≤ f(a) 가 성립하면 x = a 를 함수 f의 극대점이라고 하고 f(a)를 함수 f의 극대값이라고 부릅니다.
극소값 역시 마찬가지로 정의됩니다. 그리고 더 나아가서 일반적으로 수학 분야에서는 증가함수나 감소함수를 정의할 때에도 역시 부등호에 등호가 들어갑니다.
(그래서 등호가 빠지는 부등호로 정의되는 증감의 경우 순증가, 순감소 등의 용어를 사용합니다.)
고교과정에서 어떤 식으로 이런 개념을 정의하는지 제가 잘 기억하고 있지는 못하지만, 설사 다르게 정의하고 있다고 해도 그 정의가 고교과정 이외에서 쓰이는 것을 저는 본 적이 없네요. -_-;;
사실 이론 분야에서 만나는 수많은 함수들은 너무나도 기괴한 행동을 보이기 때문에, 증가상태에서 감소상태로 바뀐다는 식의 정의로는 다룰 수 있는 함수가 너무 부족합니다.
예를 들어서 그 어떤 점에서도 증가상태나 감소상태가 아니고 그 어떤 점에서도 미분 불가능하지만 모든 점에서 연속인 함수가 존재합니다.
이러한 함수의 예는 비단 순수수학에서뿐만 아니라 경제학에서의 주가 변동 모델이나 물리학 등에서의 브라운 운동의 수학적 모델 등에서도 찾아볼 수 있습니다.
때문에 이론에서는 가능한한 우리가 상상하는 개념을 수학적으로 다룰 수 있게 다듬으면서도 동시에 가능하면 많은 경우를 다룰 수 있도록 최대한 약한 정의를 사용하려고 합니다. 그래서 등호가 들어가는 것이지요.
사실 '상수함수는 모든 점이 극대점이고 극소점이다' 와 같은 몇몇 극단적인 케이스만 납득하고 넘어간다면, 주어진 정의는 등호가 빠진 정의외 크게 다를 바가 없기도 합니다만... -ㅅ-;;
음.. 결론만 보면 극값이 맞아요.
제가 고등학교 교과서에서 본 극값의 정의는 '증감이 변하는 점' 이구요
대학교1년 Calculus 책에서 본 정의는 Local Maximum(Minimum) 이라구 임의의 구간을 잡았을 때
구간내에서 최대(소)가 되는 점을 극값으로 정의해요. 여기서 구간을 +-무한대로 잡으면 극대값=최대값이 되겠죠??
보신책에서는 구간을 제대로 안잡아놓고 그냥 써놓은거같은데 극값⊃최대(소)값 이니까 틀린표현은 아닙니다