이과황분들 도와주세용
게시글 주소: https://app.orbi.kr/0009536239
A에서 내린 수선의발이랑
D에서 내린 수선의발이랑
이은 선분이 어떻게 BC의 중점 M을 지나가나요? ㅠㅠ
자르면 대칭이라고 하는데 정확히 이해가 안가서 그러는데
혹시 자세히 설명 해주실분 계신가요 ㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
나도 슬쩍
-
제가 살면서 주변을보면 자기가 하고싶었던거 있었는데 꿈을 접고 성적에맞춰...
-
아니 이나경 4
어떻게 마스크 크기가 저렇게 남냐???
-
메가만 100 뜨고 고속, ebs, 이투스는 99로 보는데 100 안될까요? 근데...
-
올해 진짜 공통 역겹게 나왔었는데 25공통 반영해서 좀 쉽게 내려나 아니면...
-
국어와 수학은 "강"평 ㅋㅋ
-
안녕하세요 단국대 치의학과 4학년 학생입니다. 혹시 충청 또는 천안에 사시는 분...
-
사람이 싫어하는 걸 알면서도 자꾸 해대면 어찌하노
-
번호별문제 다 이렇게 갖다박으면 ㅇㅇ 물론 이문제들 싹다 처음 보는거라고 가정하고 ㅇ
-
덕코 7
다 털었다 이제슬슬장례식을
-
내신은 3.6 모고는 44344인데 우리학교가 수시로만 학교를 보내서 정시를 그다지...
-
고3 부터 왜케 살쪘냐는 소리 많이 듣네
-
정시 기균 라인 좀 잡아주시명 감사하겠습니다 ㅜ
-
3번에 D국이 국민들 입장 물어보는거 반대친 사람 있을까요?
-
마음을 어떻게 추스려야 할지...
-
둘 다 붙으면 어디감? 대학 자체 네임벨류랑 졸업 후까지 종합적으로 봤을 때 어디가...
-
14 고사장 (컨버전스홀)
-
사람 왤케 많냐 1
음
-
떴으니까 올리지ㅋㅋㅋㅋ
-
손샘은 비문학이 강한데 문학이 어렵다하니 문학도 해야겠고 문학이 더 시간...
-
댓이나 쪽지 남겨주시먄 감사하겠습니다...
-
후무많어중. 후많중 후중 후ㆍ듕
-
1차는 붙었는데 최저를 못 맞춘 대학이 있습니다. 아직 면접 준비가 하나도 안 되어...
-
도란 귀엽네 12
ㅇㅇ
-
기억이 너무 명백한데 후자임? 2번 3번 이슈인데 마침 2 랑 3은 헷갈리기 좋은 숫자긴하긴함
-
가정했던 최악의 상황이 '대부분' 펼쳐진다는 것임
-
24수능 14 25수능 14,15 번 정도의 문제 나형이면?
-
그냥 평소에 오르비 눈팅이랑 가끔 댓글만 달았는데, 칸타타님이 근거 없이 “내가...
-
둘이 맞팔도 했네ㄷㄷ 15
사귀는 거 맞다니까
-
소름돋아
-
꿀팁좀요..
-
97뜨면 진짜 사고인데.....
-
엣큥~ 그건 기여운 와타시였네! 밥 먹기 전에 심심했음 ㅈㅅ
-
애증의 관계임. 연애한지 좀 된 장기 커플인데 이제 볼 장 안 볼 장 다 봐서...
-
6일에 받으려면 가야되는거?..
-
물리 6 9 수능 50 50 48에 과외경력+학원경력 있음 수능과외 하면 얼마 받을 수 있음??
-
무슨 맛을 마실까요 블랙 제외
-
제가 심판봐드림
-
수학 모르겠어잉 6
(fㅇf)(1)이면 f(f(1))이니까 그냥 f(1) 구하면 a/4 아닌가? 왜...
-
둘다 채점했는디 ebs 백분위가 더 맛있드라구여.. 여러분들도 메가보다 ebs가 더...
-
가군 부산대학교 경영학과 나군 부산대학교 경제학과 이런식으로 지원 가능한가요?
-
헤헤ㅔㅎ헤흐흐ㅡ헤헤ㅔ흐
-
이번주에 중앙대 외대 이화여대 논술있는데 이 성적대이면 가야겠죠?
-
1컷 88가능성 충분히 있다고하셨는데 2409가 1컷이 88이었으니 올수가 작년...
-
우우 6
아파요 속이안좋아..
-
어딘가 이상하다 싶은놈들은 사실 무대응으로 일관하는게 나은것같음 한번 상대해주기 시작하면 끝이없다
-
물1vs물2 2
재능빨은 물2가 더 타나요 둘다 하지말라고 하거나 차라리 사탐하라고 댓글다는 순간...
A에서 선분 BC에 수선을 긋고 점D에서 마찬가지로 선분 BC에 수선을 그으면 정확히 중점에서 만납니다
그정도 보조선이면 직관적으로 바로 오실겁니다
안오신다면 위에 그린 보조선을 사용해 삼수선정리를 이용한 작도를 하시면 바로 보이실겁니다
오 옵니다!!
사실 더 팁을 드리자면 평면ADH는 저거를 정확히 반띵하니까 ABD랑 ADC이루는 각 찾고 절반하시면 됩니다
세타 말씀하시는건가여!?
잘 생각해보시면
대칭인것은 이제 이해하셨을것이니까
정확히 대칭의 중심을 기준으로 각도가 갈리니까요
반띵만 해주시면 됩니다
아 D에서 내린 수선의 발이 수직 이등분선이니까 각도 이등분 해줘서 그런가여!?
네 정확히 각도도 반띵해주죠
오오옹!! 역시 갓에피... 이과똥은 똥송똥송하고 웁니다 8_8
감사합니다 !
A의 수선의 발을 A'이라고 해보죠. 선분 BC의 중점을 M이라고 두면 AM과 BC가 수직이고, AA'은 평면에 내린 수선의 발이므로 삼수선의 정리에 따라 A'M은 BC와 수직입니다.
옹 그러네용 감사합니다!
ABC는 정삼각형이므로 A에서 BCD와의 교선인 BC에 수선을 내리면 중심에 감
BCD는 이등변삼각형이므로 ~ 중심에 감
평면 완성
각각 삼각형 삼수선으로 하는거 인가요?
아 질문을 잘못봤네요 어쨌든 삼수선을 쓰긴 쓰게 됨
넹 이해됬어요! 감사해용
삼각형 abc가 정삼각형이라 a에서 bc로의 수선이 m으로 떨어지고 삼각형 bcd도 직각이등변이라 d의 수선이 m으로 떨어지죠 그리고 m에서 다시 bc에 수직이되게 선을 그으면 삼수선정ㅇ리로 a와 d의 평면으로의 수선이 m을 지나가는 직선위에 떨어집니다
열심히적었는데 꼴지네 ㅠ
음 그러면 H랑 A에서 떨어뜨린 수선의발을 H'이라 했을때
AD가 선분으로 되어있으니까 수선의 발을 떨어뜨린 점들을 이은 선분도 직선이 되고 MH가 BC에 수직이고
DH'이 BC에 수직이니까 HH'이 M을 지난다 인가요!?
BC의 중점을 M이라고 합시다.
삼각형 ABC가 정삼각형이므로 선분 AM과 선분 BC는 수직입니다.
또 삼각형 DBC가 이등변삼각형이므로 선분 DM과 선분 BC는 수직입니다.
점 A에서 평면 알파에 내린 수선의 발을 A'
점 D에서 평면 알파에 내린 수선의 발을 D'이라고 하면
삼수선의 정리에 의해
선분 A'M과 선분 BC가 수직이고
선분 D'M과 선분 BC가 수직입니다.
선분 A'M과 선분 D'M은 한 직선 A'D'위에 있으므로 직선 A'D'은 선분 BC의 중점 M을 지납니다.
윗분들 말씀대로 하니까 이해가 갔는데 이제 세타 구하는게 문제네요 ㅠㅠ
이거 어디서 본것같은데 어디문제예요??
해모파 0회영!
답 80인가요??
제발 맞는지아닌지만알려즈세요ㅠㅠ알고싶어요
저는 180 나왔는뎅... ㅠ 제가 틀릴듯 ㅠ
답은 아직 안봤어요!
이따 보시면 알려주시면 감사하겠습니다
답 하건에 있어여 ㅠㅠ 내일 저녀겡 가는데 ㅠ 죄송 ㅠ
tan세타/2가 저는 루트3 나왔는뎅 ㅠ
전 루트3분의 2나왔는데ㅠ
저는 라비아스님 말대로 풀어봤는뎅 ㅜㅜ
흠... 저위에 라비아스님말에 양쪽날개가 이루는각을 반띵하면 구하는각이 나온다는게 근거가있나요?
다른각이나올수있지않을까요
답뭐였나요? 너무뒷북인가..?