[박수칠] 분산을 (편차)²의 평균으로 계산하는 이유
게시글 주소: https://app.orbi.kr/0008124321
오늘은 어떤 주제로 글을 쓸까 고민하다가 예전에 봤던
조관 선생님의 포스팅 ( http://orbi.kr/0008006413 )
과 관련된 내용을 써보기로 했습니다.
평균, 분산, 표준편차를 열심히 공부한 학생이라면
한 번 쯤은 해봤을 고민이죠.
——————————————————————
왜 분산은 (편차)²의 평균으로 정의될까?
(편차의 절댓값)의 평균으로 정의하면 안되나?
——————————————————————
(변량)-(평균)으로 정의되는 편차는 변량이 평균보다 큰지, 작은지
그리고 평균으로부터 얼마나 떨어져 있는지를 나타내는 지표입니다.
그러다 보니 산포도 계산에 편차를 쓰는 것은 지극히 당연한 일이죠.
하지만 편차의 합은 0이기 때문에 편차의 평균 또한 0입니다.
이 때문에 편차를 제곱해서 0 이상의 값으로 바꾼 다음
평균을 계산하게 되고, 이를 분산으로 정의합니다.
여기서 편차의 제곱 대신,
편차의 절댓값을 쓰면 안될까요?
이를 알아보기 위해
세 변량 a, b, c (단, a < b < c)의 대푯값을 x로 두고
(편차)²의 평균과 (편차의 절댓값)의 평균을 조사해봅시다.
(1) (편차)²의 평균은 다음과 같습니다.
그리고 분자가 x에 대한 이차식임에 주목해서
완전제곱꼴로 변형하면 다음과 같습니다.
따라서 (편차)²의 평균은 일 때
즉, 대푯값 x가 a, b, c의 평균일 때 최소가 됩니다.
(2) (편차의 절댓값)의 평균은 다음과 같습니다.
그리고 분자가 일차식의 절댓값의 합임에 주목해서
분자로 만든 함수의 그래프를 그리면 다음과 같습니다.
따라서 (편차의 절댓값)의 평균은 x=b일 때,
즉 대푯값 x가 a, b, c의 중앙값일 때 최소가 됩니다.
대푯값 x가 평균일 때 (편차)²의 평균이 최소,
대푯값 x가 중앙값일 때 (편차의 절댓값)의 평균이 최소인 것은
n개 의 변량 에 대해서도 마찬가지입니다.
(3) (편차)²의 평균
따라서 (편차)²의 평균은 일 때,
즉 대푯값 x가 의 평균일 때 최소가 됩니다.
(4) (편차의 절댓값)의 평균
i) n이 홀수일 때
일 때 최소
ii) n이 짝수일 때
x가 구간 에 속할 때 최소
i), ii)로부터
(편차의 절댓값)의 평균은 또는 일 때
즉, 대푯값 x가 의 중앙값일 때 최소가 된다고 할 수 있습니다.
따라서 (편차)²의 평균은 대푯값이 평균일 때 최소이므로
평균 에 대한 분산을
으로 정의하는 것이 자연스럽다는 것을 알 수 있습니다.
또한 변량 의 중앙값이 일 때
(편차의 절댓값)의 평균
를 '평균편차'라고 하며, 임금 근로자 연봉 분포처럼
변량의 분포가 한쪽으로 치우친 경우에 산포도로 많이 사용합니다.
그리고 대푯값/산포도로 평균/분산(또는 표준편차)을 사용하면
중앙값/평균편차의 조합보다 공식의 변형이 자유롭다는 장점이 있습니다.
덕분에 분산을 { (변량)²의 평균 } - (평균)²으로 계산할 수도 있고,
미분/적분이 상대적으로 쉽죠.
추가적인 장점이 또 있는데
그건 제가 이해를 못해서...
[참고 자료] 기초통계학의 숨은 원리 이해하기 (김권현 저)
[알림] 박수칠 수학 미적분1-적분법 단원 부교재가 업로드 되었습니다.
본교재 문제에 수능/모평/학평 기출 54문제가 추가되었습니다.
다음에 작업할 단원은 미적분2-적분법입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
한양대 밖에 있는 스터디카페에서 한양대 시험장까지 걸어서 20분이라;;
-
냥대 상경 0
2-2 2만얼마/2025로 잘못풀었네요….ㅋㅋㅋㅋㅋㅋ
-
ㅇㅇ
-
존잘은 뭔가 느끼해서 싫다든가 존예는 뭔가 부담스러워서 싫다는 사람 있니
-
으흐흐
-
뚝배기불고기 이제식후커피때리는중 오늘첫끼니아침맞음
-
어땠나요?? ㅜㅜ 소재는 무난했던거같은데 난이도는 평이했나요..??
-
대충 얼마정도인가여
-
올해 모의논술은 잘풀었었는데 문제유형은 비슷한게 많긴했던거같긴한데 모의논술보다 훨씬...
-
경영임 응원 좀
-
평소보다 너무 안 나와서 재수 생각하는데 일단 대학 걸고 해야되나 고민돼서요.....
-
문제될까요ㅠ 입학처에 말을 해야할지 그냥 둘지 모르겠네요 괜히 했다가 문제될까봐...
-
고3 생기부 하나도 빠짐없이 한줄이고 무단결석도 거의 50번인데 내신 2.4면...
-
중앙대 수리논술 1
1번에 9분의2맞지?
-
응원 한마디 부탁해요
-
하지만 이번생은...
-
이 문제인데 a의 값을 구하면 쉽게 풀 수 있는 문제인데 다시 풀다가 궁금증이...
-
준비 1도 안하고 논술 와있는데 가망없는거 안가기도 뭐하고해서 걍 옴.. 나중에...
-
1.머리 배려심이 많고 이타적이다 2. 세수 자기평가에 예민하다. 3. 양치...
-
화이팅
-
1. 사귀기전에 나랑 여친이랑 썸탈때 나한테 갑자기 친추후 나한테 dm보내서 지가...
-
미적76 0
미적 76 2등급 제발 주세여 제발
-
후기 90분은 힘들다. 기억이 안나고 정신차리기 힘들고 그냥 그동안 풀어온 본능으로...
-
주인공 집에서 불끄면 물건 날라다니고 주인공 몸 굳어가는 소설이예요 기출에 나왔던거 같은데
-
대구한이 유급은 좀 더 빡센걸로 알고 있는데
-
엄.. 8
-
군수 예정 3월 입대(공군) 서울대학교 재학중 목표: 의대 선택 과목 :언 미 물...
-
냥대 상경 4
3번에 k 자연수로 풀어서 답 틀렸는데 아예 가망 없을까요 최대까진 제대로 구했는데 하...
-
빅포텐 1,2까지는 풀꺼같은데 혹시 3까지 다 풀어야 하나요?
-
중앙대 영어 최저 2->1로 쳐주는거 알고 있으셨나요? 3
전 저번주네 보고 황급히 준비..
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 미리 하나 장만해두세요~~...
-
메가는 된다고 하는데 다들 안될거라는 분위기네
-
상의가 캐주얼한것밖에 없음 결국 한시간동안 코디하다가 안돼서 긴팔에 츄리닝으로 복귀
-
실수 한문항 했던거같은데 그게 너무 걸린다. 최저도 까다로운편이고 경쟁률도...
-
애니안보는이유 5
인싸청춘라잎 보면 자!살말릴거같아서
-
과는 사회과학계열입니다... 메가 예측에서 안정으로 뜨긴 합니다.
-
아빠가 이상한 기사 보고 와서 계속 영어 1등급 7~8% 나온다는데 4
메가 비율 보여주면서 똑같은 얘길 5번째 해주고 있네 ㅈㄴ답답하다 뭔 사기꾼 기사를 보고 온 거야
-
[고려대합격자를 위한 꿀팁][사전공지]_수능 끝나고 입학 전까지 하면 좋을 것들 [학업 편] 0
안녕하세요. 고대에 처음 발을 딛는 우리 '아기호랑이들'을 위해, 2024년...
-
1. 자연과 윤리 위 - 9모 아래 - 수능 ㄹ선지 연계 2. 사회와 윤리 위 -...
-
전 유명해져야하는데 17
그래서 이쁜말만 하는중
-
입실 1등 15
논술 1등 장원 급제 드가자
-
높은편임? 왱케 많이왓지 우리 반에 22명잇던데
-
문제 똑같음? 뽑는건 따로 뽑지않나
-
정신없네…
-
두근두근
-
미적 3-2는 못풀어서 다른것들만 올려봅니다
-
12월 말 개강전에 대기 풀림??
-
사탐런 저격으로 생윤 ㅈㄴ 괴랄해졌는데 평가원에서 그것도 수능에서 한 번 어려우면...
-
머리 존나 아프네
-
나머지 문제 빼고 다 풀었고 나머지 문제도 답은 냈는데 전 좀 쉬웠던 거 같았는데 다들 어떠셨나요?
ㅋㅋㅋㅋ 오르비스티커 너무 귀여워여
그러니까요... 진짜 예쁘게 잘나왔어요.
그 외에도 확률변수에 대한 적률 적률생성함수 중심적률등과도 관련이 있지 않을까 생각됩니다.
물량공급님 외계어도 쓸 줄 아셨군요.
좀 배워야겠다...
적률생성함수라는 마법의 도구가 있더라구요
찾아보니 학부 확통 과목에서 배웠던 함수네요.
지금 보니 뭔 얘긴지 하나도 모르겠음 ㅎㅎ
최소점이 평균값이기 때문에 제곱을 쓴다는 건 결과론적인 해석이 아닐까요?
제곱을 써야만 하는 수학적 필연성이랄지, 이런게 있으면 좋을 것 같은데요
예를 들어, 정규분포 함수의 식에는 제곱을 이용한 표준편차가 들어가죠. 만약 표준편차를 다르게 정의했을 때 같은 식을 유도할 수 있는지, 그렇지 않다면 왜 그럴 수밖에 없는지 같은 것들 말입니다
본문의 내용은 결과론적인 해석이라기 보다
{ (변량-평균)²의 합 } / (변량 개수)를 분산으로 정의한 이유의
일부라 할 수 있습니다.
근본적인 이유로 들어가자면
{ (변량-대푯값)²의 합 } / (변량 개수)를 최소로 하는 대푯값이 평균이고,
이 평균을 모집단과 표본의 대푯값으로 쓰면 모평균의 가장 합리적인 추정치로
표본평균이 똭~ 나타납니다.
이 부분을 설명하려면 '최대우도추정법'이라는 걸 알아야 하는데
여기서 굳이 설명할 필요도 없고, 저도 잘 모르거든요 ^^;
그래서 '고등학교 수준에서 이 정도 설명이면 충분하겠다'
싶은 선에서 끝냈습니다.
이런 것 보면 아무 호기심 없이 그랬구나...그렇구나...하고 받아들이는 제 자신이 다행스럽네요. 문과여서 여태 통계문제 풀면서 저런 증명이나 원리를 몰라서 틀린 적도 없고 개이득
몰라도 되는 건 이과도 마찬가지입니다 ^^
그냥 궁금해할 수험생들을 위해 정리한거예요~
loss funtion?
손실함수라...
6시그마 교육받으면서 배웠던 건데
갑자기 왜 나올까요? ㅎㅎ
경영쪽 아니고 경제학부 통계시간에 교수님께 배운건데..
추정량과 모수의 차이를 나타내는 함수를 loss function 이라 하지않나요,,? 이거 배우면서 글에 나온 내용도 같이 알게되고 했던 기억이 나서요~
아~ 용어만 같고, 정의가 다른가 봅니다.
제가 배웠던 것은 품질관리쪽에서 손실 비용 계산에 쓰는 함수거든요.
이유식님이 얘기하신 손실함수까지는 공부를 못해봤어요 ^^
저도 맛보기정도만 한 비루한 학부생입니다 ㅠ
댓글 달아주셔서 감사합니다.
헐 신기하네요 이거 궁금했었는데 감사해요ㅋㅋㅋ 오 신기하다 맨날 하필 왜 제곱일까....이랬었는데
제가 기다렸던 반응이 드디어 나왔군요.
감사합니다 ㅎㅎ
절대값을 왜 안쓸까 했는데 쓰는데가 있기도 하군요
그러게나 말이에요.
저도 참고자료 보면서 처음 알았어요~
조만간 책나오면 살건데 박수칠님 글 너무 도움됩니다 모든글 지우지 말아주세요ㅠ
안지울테니 걱정마세요~ ^^