나형 자작문제
게시글 주소: https://app.orbi.kr/0007833860
미완성작인데 극한존재 &가우스 다뤄볼려 했으나
계산이 너무 복잡하게 나와서 이정도까지밖에 못함,, 너무쉬운거같은데..
고치고 싶은게
1.(가)조건 좀 어렵게 주기 (ex.정적분으로 정의된 함수)
2.함수가 (0,2)말고 (0,0) 지나게해서 S가 공집합아니라 2개이하 하고싶은데 그럼 계산이 안드로메다..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
하루종일 사탐만파는 담뇨단들 수능장 한방으로 담군건 좀 희열느껴짐뇨 심지어...
-
미래는 맥주에 있다
-
ㄹㅇ 갑자기 이렇게 질문받으니까 생각이 안남
-
ㅇㅈ 4
수익률ㅇㅈ 불쌍하면덕코라도주세요...
-
솔직히 올해 디카프였나 생명쪽 실모 평은 굉장히 구리긴했음ㅋㅋ
-
하 모르겠다 0
컷이고 만표고 스트레스만 받네 과목선택을 뭣같이 해서..논술 붙었으면 좋겠다
-
걍 처잘까 1
흠
-
옯스타 맞팔해요 7
방굼 만들엇어요 본계든 부계든 다 오케이에요 칭구해요~
-
고2때부터 정시준비해서 강기분 새기분끝냈고 지금 검더텅하고 있는데 겨울방학 때 뭐해야될까요?
-
1. 책이나 괜찮은 유튜브로 주식에 대한 기초 공부를 하면서 국장은 하지 않는다...
-
실모20회분 35000원 무료로 올려주는 실모도 한 20개였나 정확하진않은데 10개이상됨
-
생윤은 무조건 챙길수밖에 없을거같고.. 사문은 도저히 못하겠어서 만약 삼반수...
-
오징어들은 어떻게 살라고 커뮤에서조차 열등감을 느껴야 하다니 ㅆㅂ 예쁘고 잘생긴...
-
폰겜 추천좀 1
힐링되는걸로...... 마크빼구요ㅋ
-
개열받네 6
하... 난걍뒤져야지
-
ㅋㅋㅅㅂ
-
2026 수능 0
뿌시고 올 team 04는 ㄱㅊ!
-
걍 전부 쓸어버리고 싶네
-
ㅈㄱㄴ
-
실채 나오고 텔그나 진학사 변경되는데 몇 일 걸리나요?
-
아니시발 3
그아아ㅏ악
-
볼륨도 개크고 어느정도 개념 있는 상태에서 들어야하나? 난 2배속으로 들었는데 정말...
-
ㅇㅈ 22
꼴에 장발하는 개찐따옯붕이다 됐음??
-
팥붕보다 슈붕임 4
진짜 오늘 두개 먹으면서 한번 더 느꼈다
-
한문제 더 맞춘 성적 넣어보기
-
띠발 족같네 14
족같다 저 와꾸로 오르비 왜 함.
-
올해 국잘수잘탐망이 많아서 표본에 비해 갈수있는 대학이 널널해져가지고 내가 가능한...
-
나이테는 잘 보이지...
-
ㅇㅈ 1
-
19번까지 풀어서 16개 맞았고 그러니까 13,14,15 틀렸어요 13번 어느...
-
원랜 아무리 사탐으로 꿀빠니 뭐니 해도 사탐 골라서 취업도 미래도 없는 문과로...
-
잘자요 4
내일봐요
-
미소녀로 다시 태어나 있을 테니까!!!
-
https://www.mycsat.re.kr/report/index.do...
-
크리스마스 6
다가와도 아무느낌도 없구나 외로움을 못느낄정도로 감정이 무뎌졌나
-
못참고 샀는데 제가 대충 경외시건 라인인데 궁금해서 스나용으로 성한중 라인대 확률...
-
돌아보면 제 개념에 빵꾸가 왕창 나 있었던... 변명 못 하겠네요 이렇게 된 이상...
-
2-3등급 학생들에게 독인 시험이 아녔나요? 준킬러 없이 극단적으로 나뉘니까..
-
중앙대 경영 1% 외대 경영 8% 외대 Language&AI 41% 홍대 A학과...
-
작년기준 컷 1
작수보다 이번 수능이 만표가 낮은것 같은데 그러면 컷 자체도 떨어진다고 봐야하나요?
-
어려울 필요도 없고 딱 준킬러 역할만 하더라도 풀다가 시간 쓰고 풀다가 실수하고...
-
해병대 전우회 고려대 교우회 호남 향우회 참고하셔서 성공적인 사회생활 하시길
-
지원 조건에서 없어진건 알고있고 표점 생각했을 때 투과목이 필수인 건가요??
-
유저 차단 어케함요? 12
ㅈㄱㄴ 아무리찾아봐도없던뎅
-
미적 14 15 20 21 27 28 다 맞추고 22 29 30 틀리면 '1컷'...
-
옵붕아머해 8
머해??????????
-
술 마시는 것도 아니고 게임 하는 것도 아니고 걍 붕어빵 열 마리 사다가 나눠먹고...
-
거기까지 가서 한국어는 별로 듣고싶지 않은데..
f(x)가 3차함수이면 나 조건이 성립할수가 없는데요 나 조건이 성립하려면 상수함수여야 하니깐요 g(x)가 s조건에 f(x)대신 들어가야 하는거 아닌가요
아아 저기에 t (x)요
네?? 무슨 의미죠??
T (x) 전체 함수요 f g가 3기준으로 좌우인
T가 3차함수라는 건가요??
저 위에 나와있는대로 x가 3이하면 삼차인 f (x) 3이상이면 2차이하인 g (x)요
..? 그거랑 상관 없이 나 조건에 의하면 f(x)는 3차함수일수가 없는데요..??
그거 그리는 게 문제임 ㅎㅎ
나 조건 자체가 항상 상수함수라는 의미인데요..?? 3차함수가 어떻게 저 조건을 만족하죠..?
(0,2) 지나는 함수를 죽 이어그려서 (2,3) 에서 접하고 내려오면
가우스로 변환했을때 상수함수 y=2가 나오다가 x=2에서만 빵꾼데 빵구는 극한값과 관련 x
그 부분은 맞긴한데.. X<0인 부분에서는 조건 나가 성립할수 없지 않나요
f (x)정의역 기준으로 0에서 3까지니까 그안에서만 만족하면되요
아.. 그렇군요 죄송합니다 x>=0을 못봤어요..
문제가 너무 난해해서 그래요 ㅋㅋ 도저히 이이상으로 못하겟음
근데 거까지 하시면 그만 하셔도 될듯 그다음 계산 저도안해봄.. 그냥 아이디어만 써보고싶어서
g (x)가 정확히 뭔지 까지만 알면 맞춘거
궁금한게 있는데요 g가 다항함수라는 조건이 없어도 상관 없나요??
다 조건때문에 2차이하 아 다항함수라고 해야 정확하갯내요
근데 저도 그럴까 생각하다가 교과서에따라서는 상수함수가 다항함수에 포함안된다는 것도있어서 애매해서 그냥 뺏어요ㅋㅋㅋ
전 로그함수 때문에 신경쓰여서.. 이러면 변수가 너무 많아져서요
아하.. 저희땐 로그,지수함수를 안배워서 그런거 생각도못함
습작이라 오류가 많음 ㅋㅋ
이 문제는 아이디어는 좋은데.. 얼핏 봤을때는 주어진것만으로는 최솟값 구하는게 불가능할거란 생각드네요.. 내일 아침에 일어나서 직접 풀어봐야 확실해지겠네요..
일단 f(3)=2고 x=2에서 극대 인것 정도만 보이네요
친구들 한테 문제 주면 어렵다고 안풀라하는데 달빛님은 항상와서 저랑 놀아주고 오류도 고쳐주셔서 고맙네여 ㅎㅎ
ㅎㅎ뭘요 취미 입니다 앞으로도 많이 올려주세요ㅎ