[칼럼] 기하 뉴비들을 위한 안내서 Vol.1 (Feat. 베르테르 19번)
게시글 주소: https://app.orbi.kr/00071670622
부제 - 문제를 "다각도로" 바라보셔야 합니다
안녕하세요, 의대왔다고 입니다.
오늘 칼럼은 기하 문제를 다각도로 바라보고 해결하는 방법에 대해 다뤄볼까 합니다.
기하라는 과목 자체가 선택자 수가 적기도 하고, 그럼에도 기하라는 과목을 선택하시는 분들은 이미 기하를 잘 하시는 분들이 많기 때문에 이 칼럼이 얼마나 많은 분들께 도움이 될 지 잘은 모르겠습니다.
그러나, 혹여나 기하를 그저 "재능의 영역"으로 생각하고 막연히 기피하고 계시거나, 미적에 자신이 없어 선택과목을 변경하시고 싶으신 분들이 약간의 힌트를 얻어가실 수 있으리라고 생각하고, 오늘 칼럼은 그런 분들께 초점을 맞춰 진행해보도록 하겠습니다. 혹시나 나는 미적분 선택자지만, 과외에서 기하도 가르칠 필요가 있다라거나 가르치고 싶다(시급을 올려!) 하시는 분들도 읽어보시면 도움이 되실 것 같습니다. 그닥 딥한 내용은 나오지 않으니(학문 자체가 딥하지 못합니다) 편하게 읽어주시면 될 것 같습니다.
저희가 난이도가 높은 미적 문제를 풀 때는
1. 문제 발문을 몇 개의 친숙한 덩어리로 쪼갠 후
2. 각 덩어리에서 얻어내야 할 단서들을 얻어내서
3. 이를 조합해 나감으로써 해결합니다.
기하의 공간도형 문제들도 위와 비슷한 방식으로 해결해 나갈 수 있습니다.
다만, 문제의 발문을 "쪼개는" 대신, 주어진 입체를 다각도에서 관찰함으로써 저희에게 친숙한 상황들을 관찰하고 이로부터 필요한 정보들을 얻어냅니다. 이 내용을 조금 더 자세히 설명하기 위해 아래 문제를 분석해보도록 하겠습니다.
다음 문제는 기하를 공부해 보셨더라면 한번쯤은 들어보셨을 그 악명 높은 "베르테르 77제"의 19번입니다.
(시작부터 장난질이냐 라는 생각이 드실 수 있지만, 문제를 차근차근 여러 각도에서 바라보면 해당 문제가 그닥 빡빡한 문제는 아니라는 것에 동의하실 수 있으실 겁니다.)
위 문제를 끝까지 읽었을 때, 다른 조건은 그래도 머리에 좀 상황이 그려지는 방면, 정말로 물음표만 띄우는 발문이 하나 있을 것입니다. 바로 아래의 발문이죠.
해당 상황을 주어진 그림에 그대로 표시해보면 아래와 같습니다.
이걸 그리고 난 다음에 드는 생각은... "대체 어디가 A'T가 최대가 되는 지점일까" 라는 것입니다.
이 조건을 분석하기가 까다로운 이유는, 선분 A'B'과 점 T가 움직이는 원주가 한 평면 위에 올라가 있지 않기 때문입니다. 가령, 선분 A'B'과 점 T의 자취가 한 평면 위에 있었다면, A'T기 최대가 되는 점 T의 위치는 A', B', T가 한 직선 위에 있을 때가 될 것입니다.
그럼 이제 여기서 멘붕이 옵니다. 저 원주를 A'B'이라는 선을 포함하는 평면상에 정사영시켜서 타원을 만들고... 그게 일직선이 되는... 근데 높이는 또 고려해야 하는데... 머리가 아프죠.
근데 위 문제 상황을 아래와 같이 다른 각도에서 관찰하면 어떨까요?
위 상황을 평면 beta를 밑면으로 두고 관찰한 것입니다. 이 때, 점 A'을 평면 beta 위에 정사영시킨 점을 점 H라고 하면, 위 문제 상황을 아래와 같이 관찰할 수 있습니다.
이러면 H B' T가 한 직선 위에 있을 때 A'T의 길이가 최대가 됨을 직관적으로 쉽게 알 수 있게 됩니다.
그럼 아래와 같이 (나) 조건을 쉽게 분석할 수 있습니다. (밥아저씨가 된 기분이네요)
이제 구하라는 것을 구해서 답을 내보도록 합시다. 구하라는 것은 아래와 같습니다.
(어떠한 도형의 다른 평면으로의 정사영의 넓이를 구하는 방법도 크게 두 가지가 존재합니다. 이는 나중에 다른 칼럼에서 찾아뵙겠습니다.)
이 때, 주어진 문제 상황을 평면 alpha와 beta가 모두 일직선으로 보이게 되는 각도에서 관찰하면, 아래와 같은 모습이 보일 것입니다.
위 그림을 통해 AB와 PQ의 길이가 같고 평행하며, AB와 B'B가 수직함을 이용하여 원래 삼각형 ABB'의 넓이와, 삼각형 ABB'을 포함한 평면과 평면 alpha의 이면각을 알 수 있습니다.
따라서, 구하는 넓이 S는 아래와 같습니다.
풀이의 사고 과정을 차근차근 따라오셨다면, 이해가 가지 않는 부분이 딱히 있었을 것 같진 않습니다. 다만 물음표는 생길 수 있는데, 가령 아래와 같은 질문이 생길 수 있죠.
"야 너는 저걸 어떻게 평면 beta를 깔고 볼 생각을 했냐? 역시 기하는 재능이야."
위 생각을 하게 된 과정은 다음과 같습니다.
1. 저희는 원주 위를 도는 임의의 벡터를 다른 평면에 정사영시킨 벡터를 가지고 최대/최소를 논한 적이 단 한번도 없습니다. (못할걸요 애초에)
2. 그럼 A'B'을 원주가 있는 평면 위로 정사영 시켜봐야겠다는 생각이 자연스럽게 따라옵니다. 이 때 A' B'은 모두 고정점이기 때문에 정사영 시켰을 때 기존 문제 상황 대비 동점이 더 늘어나지도 않으며, 저희에게 "친숙한" 그 문제상황이 나타나기 때문에 옳은 방향을 잡았다는 것을 느낄 수 있습니다.
해당 문제의 풀이를 한 페이지에 정리하면 다음과 같습니다.
뭔가 상당히 복잡한 사고 과정을 거쳐간 것 같지만, 막상 저희가 한 일은 주어진 문제 상황을 다각도로 바라보는 것 그 이상 그 이하도 아니었습니다. 풀이 과정도 막상 계산하고 쓸 건 별 게 없죠. 이게 미적과 비교했을 때 기하의 엄청난 장점이라고 생각합니다.
다만, 주어진 상황을 3D 모델링 마냥 머리에서 빙글빙글 돌려가면서 관찰하는 것이 부담된다면, 권하기 힘든 과목인 것 같습니다. 장단이 명확하죠.
(위 풀이과정을 따라오시면서 요리보고 조리보고 알 수 없는 둘리 둘리 하셨다면 기하런은 지양하시는 게 좋습니다. 뭐 당연한 얘기를 이러고 길게 써 놨냐 하신다면 표점 vs 안정 1을 두고 잘 저울질하셔서 현명한 선택을 하시길 바랍니다.)
사실 이제까지 기하 문제의 해설은 그림 1개, 약간의 계산, 답으로 이루어진 것이 가장 아름다운 해설이라고 생각해 왔었습니다. 그러다 문득 그 아름다움에 남들이 공감할 수 없다면, 과연 그것이 진정으로 아름다운 것일까 라는 생각이 들었고, 논리 과정을 자세히 풀어서 써 본 칼럼을 작성하게 되었습니다.
기하를 사람들이 막연히 어려워하는 이유 중 하나가, 잘하는 사람들이 풀어둔 풀이에서 "도통 어떤 흐름으로 사고가 진행되었는지를 읽어낼 수 없다"인 것 같습니다. 그래서 앞으로도 종종 위와 같은 칼럼들로 찾아뵐 예정입니다.
"기스퍼거 저 놈의 머릿속은 도대체 어떻게 생겨먹었는가"에 대한 궁금증이 있으셨던 분들은 한 번씩 들러주시면 감사할 것 같습니다.
미적, 공통 관련 칼럼도 하고 싶은 이야깃거리가 생기면 잘 정리해서 들고 와보도록 하겠습니다.
긴 글 읽어주셔서 감사드립니다.
(좋아요와 팔로우는 사랑입니다. 이 사람이 더 많은 칼럼을 쓸 원동력이 됩니다!)
0 XDK (+1,000)
-
1,000
-
지금도 만나네 23년 5월부터인가 되게 오래 만나네 유머코드도 잘 맞아보이긴 하더라...
-
설날
-
안녕하세요, 홍익대학교 선배님들. 우선 제 게시물을 봐주셔서 정말...
-
이감오프2 일정 2
간쓸개 6권, 모의고사 2회분으로 알고 있는데 3/1부터 간쓸개 6권을 매주...
-
오르비 여론조사 인강편 14
다들 몇배속으로 듣나요?
-
아주대발표언제해 0
빨리내놓으라고
-
1지망이던 설대 붙었으니 편하게 씀 오르비 유명 컨설팅에서 70넘게주고 받음...
-
난 빼빼로 2
여친말고 받아본적 없음!
-
반말 죄송합니다 제발 등판해주세요 진학사에 입력 해주시면 안될까요... 안됨말고
-
시간표 짜봄 8
1 2 어떤 게 더 나아보임?
-
되게 뾰족하구나 혀로 맨질거리고 약간 씹엇는데 꽤 아파서 놀랏네
-
수능 보고 나서는 노트북으로 밀렸던 무한도전 싹 다시 보던 게 생각나네요.그냥 딱...
-
잇올 다닐 때 수능 전 날에 어떤 누나가 줌 호감의 빼빼로는 아니고 그냥 같은 버니즈라고 줌!!!
-
빼빼로 메타는 뭐야 16
나는 못받아봤는데
-
SKY의 S는 시립이라고 하고다닐거임
-
근데 빼빼로 2
떡밥 도는 이유가 머지 11.11아닌가 빼빼로데이는
-
설치 설수리 설의 14
23년도 설치 최종합격(첫 수능) 24 설수리 졸업(24 수능 때도 성적은 설치...
-
수시납치당하면 정시 합격증 자체를 못받나요? 아니면 정시합격증은 받을수있는데 이후에 취소되는건가요?
-
시잉이이리ㅣㄹ발 이케 늦게 처 보낼거면 pdf라고 올리라고 8
시이이이이이이이발 서바도 아니고 어싸 그거 어차피 틀딱에 적용용 아님 문제풀 가치도...
-
그러함 ㅇㅇ
-
이건 보통 맞는 것 같은데 수리논술을 잘한다 -> 수능수학을 잘한다 이건 또...
-
우와 저번주 과제를 7주차 하루전에 받았어요 22 30도배되있지만 하루만에 끝내고...
-
과학 지문이 너무 어렵다 ㅜㅜ 내인성 레트로바이러스 지문 풀어봒는데 이해가 안 돼 ㅜㅜㅜㅜ
-
설대 붙은 애들 보니까 관악가서 술마시던데 무슨 10반 11반 해서
-
가슴이 쑤신다
-
애초에 다른 알바랑 다르게 과외하고 끝이 아니잖음 준비도 해야되고 ... 그런거...
-
나밖에 없을듯 ㅋㅋㅋㅋㅋㅋ
-
dbpia 들어가서 고시계에 오른 고시합격자 수기 보면 은근히 재밌는 부분도 있고 반성하게 되는 부분도 있습니다. 2
솔직히 저는 학부생 1학년 시절에 고시계 알았으면 고시 준비했었을 지도...
-
씻기전 맞팔구 2
40명 찍으면 씻으러감 이제 물리 안해서 물리력 떨어져도됨
-
여사친이 줫음 고2때 갈궈서 미안하다며
-
설공 붙여주면 ㄹㅇ 교수님 랩실의 노예로 평생 살 수 있음... 내년에 설공가면...
-
1 : 국어 올리면 의대, 못올리면 연공 2 : 국어 올리면 설치, 부산의,...
-
볼 게 많아진다
-
최적 큐뱅크 3
메가스터디 들어가도 큐뱅크 블랙라벨밖에 안팔던데 큐뱅크는 어디서 사나요?
-
30점대나오고 그랬어
-
대체 뭘 깨달으신 겁니까..알려주실 고수분?
-
속보 5
입니다
-
나오는거 가능할까요? 진짜 가끔 보이던데 60점대에서 수능 1등급
-
밑에 글 있길래 가져와봄
-
올해도 정신 못차리고 화학할예정 ㅋㅋㅋㅋㅋㅋ 다맞으면 그만이야 ㅋㅋㅋ 만백 95면? 삼수딱대
-
전화공포증이라 항상 떨리고 기가 너무 빨림 성적 오르긴했는데 ...
-
새터 오티 날짜 공유해주실 수 있나요!! 예비번호 받았는데 전화추합노려야 할 것...
-
그리고 베댓........ ㅠ...
-
메타가 이상해 4
이상하면 치과로.
-
옵붕이들 잘자 14
엉아 오늘은 일찍 잘게
-
찐따의 장점 10
돈 아껴서 주식가능
기하칼럼은 좋아요
기하에 관심은 없지만 동정의 의미로 좋아요
ㅋㅋㅋㅋㅋㅋㅋㅋㅋ 아... 슬프지만 감사합니다... :)
최고로 멋있어지는 방법!!
그저 시호님의 발자취를 걷고 있을 뿐입니다...
ㅋㅋㅋㅋ 우리 기하 많이 사랑해 주세요... 감사합니다!
기하해야되나
현역이라 수능 기하치면 공통미적확통기하를 다 해야돼요ㅠㅠ
그럼 이참에 논술로...!
현역 화이팅입니다 ㅠㅠ 할 게 넘 많죠
읽어주셔서 감사합니다!
정성이 들어간 글 잘 읽었습니다 :)
기하 1등급으로서 너무 강추합니다 아주 좋아요
ㅎㅎ 기하가 잘 맞으시는 분들은 정말 편하게 1등급 받아가실 수 있다고 생각합니다
이것도 아주 큰 도움이 되죠 ㅎㅎ 다음에 관련 내용으로 칼럼을 작성해볼 예정입니다
좋아해주셔서 감사합니다 ㅎㅎ!
미적러지만 개추
그저 "범부"일뿐...
방금정독했는데벽느껴져요
어질어질합니다
ㅎㅎ 열심히 써 봤습니다 감사합니다