수학칼럼 (부제:일단 진행시켜)
게시글 주소: https://app.orbi.kr/00071669145
필자약력:작년 한해 고정99
평가원의 공통된 킬러 기조는 한번에 풀이를 끝까지 구상하기 불가능함이다.
문제를 읽고
여러 조건들의 호흡을 맞춰서
명확한 시작점을 찾아야 한다.
1.우선 조건 해석 자체를 한다
2.조건을 엮어 새로운 명제를 이끌어낸다
3.발견한 명제로 어느정도 풀이 진행을 하면 발견적 추론요소가 나올때가 있다(보통 킬러문제가 그렇다)
발견적 추론요소란 더이상 표면적으로 보이는 조건이 없을때 일단 진행을 하면 보이는 새로운 규칙(명제)을 말한다
필자는 1번을 중요시 하는데
1번이 제대로 되지 않으면 3번을 진행할때 ‘일단 해보자’가 ‘뭐든 해보자’가 되어 풀이가 산으로 가기에 그렇다
그렇다면 1번을 제대로 하는 방법은 무엇일까
강기원 선생님의 방식을 인용하면
조건<=>자신만의 언어 혹은 수식으로
필요충분조건으로 정리를 하고
가능한 ‘시각화’를 해야
인지부담을 덜고 조건을 빠짐없이 필요한 상황에 쓸 수 있다
말로는 쉬우니 문제로 바로 가보자
251115이다
원래 미적문제를 쓰려 했지만 확통이들이 서운해 할까봐 공통으로 들고 왔다
문제를 순서대로 읽어도 (가)조건 전까지 할게 없다
(가)조건을 보자
미분 가능하단다
(나)조건을 얼핏보자
도함수가 나온다
기울기,접선문제는 사교육 저격으로 거의 사장당한 현시점
거의 100프로 도함수를 이용하는 문제라 확신 가능하다
도함수 자체를 main함수로 보고 기울기,미분계수 따위가 아니라 도함수의 함숫값을 봐야한다
이제 1번을 한다
더이상 표면적으로 드러나는 정보가 없다
(나)조건을 더 해석하러 간다
그래프는 심심하면,대충 필요할거 같을때? 보다 이럴때 그리는거다
여기서 시각화의 중요성이 나오는데
최고차항 계수가 음수인 이차함수의 도함수는 감소하는 일차함수이고 이걸 f’x오른쪽에 표현을 해줬기에
0오른쪽에서 실근이 하나 생긴다는 중요한 명제를 파악가능하다
여기까지 그리면
x<0에서 이차함수가 실근을
2개 가질지
1개 가질지
가지지 않을지
고민이 된다
물론 1개를 가지는 경우에서 접하는 경우는 맨 처음 조건a=/3root5로 거를수 있긴 하다
하지만 조금만 더 생각을 해보자
구하는값이 범위가 아니라 실제값이다
미지수 a를 처리할 조건이 더 필요하기에 직관적으로 실근 2개를 가지겠고
그래프 관찰을 통해 겹치게 만들어줘야 겠구나란 생각이 든다
케이스가 복잡해 보일땐 무지성으로 진행하기 보단
양 극단을 먼저 조사해 봐야 한다
함수가 어떻게 겹치든 좌 우 양 극단에서 실근이 2개가 나온다를 파악가능하고
우리는 나머지 4개의 실근을 겹쳐줘 2개로 줄여야 하는걸 느낄수 있다
이후에 필자는 4칸 평행이동,실근의 개수를 보고
241122박승동선생님의 수직선 첨자 풀이를 떠올렸다
이후엔 계산만 해주시면 된다
사실 서두에 내용을 제대로 보여주려면 미적문제를 들고 와야 하는데
여기까지 쓰는 필자도,읽어준 여러분도 피곤하니 이만 마치겠다
후속편은 쓰게되면 더 잘써보겠다
읽어줘서 고마워용
과외만관부
0 XDK (+1,000)
-
1,000
-
뼈문과인가요??
-
사실 매일 하고 있음
-
제가 한 피구 했었죠 22
잡는거 던지는거 피하는거 다 잘했어요 빨리 ㄱㅁ 달아주세요
-
인강 개념교재 하나 보면서 기출 실모 벅벅하면 다른 커리는 필요 없는 것 같은데
-
하 자야지 0
-
3년만에 입시판에 들어갈려 합니다. / 부제 : 이런 경우에는 군수를 안 하는 게 맞나요? 5
현역 때 수능은 망쳤지만 운 좋게 대학은 잘 간 04년생입니다. 군대를 21살...
-
이 사람이 좀 나가줘야하는디...
-
어딜가나 특정될거같애
-
ㅇㅈ 12
전역 3주 남음 끼얏호우
-
쓰레기 죽어
-
학원을 착실히 다녀서 과고에 가고 싶구나..
-
숙대 자전에 정시로 최초합 했는데요... 고 3때 내신공부+학교 수업+학습방향못잡음...
-
찾아봐도안나오네
-
아~~~.그때가.참.그립구나.~~
-
고1로 돌아갈 수 있음 감 너무 후회되는 일들이 많다..
-
전전 13번 제발ㅠㅠㅠㅠ......
-
피터팬 말고 그 군대에 있는 ㅈㄴ큰거요 저는 고등학교때 기숙사에서 봤어요 아침에...
-
이때아님 언제싸냐 에휴뇨이
-
있으신가요?
-
오야스미 2
네루!
-
코너스톤 10
마약n제 자유사고 n제 오버컴 더 크리티컬 포인트
-
점심시간에 군중 중의 고독 즐기며 혼자 밥먹기 여자애들한테 경멸이랑 개인 카톡으로...
-
고등학교가 좀 그립다 16
저녁먹고 야자 전에 친구들이랑 피크닉 빨면서 노가리까기 야자때 몰래 나와서 탁구치기...
-
체스하실분 22
초보자만 ㄱㄱ
-
6모 91 100 2 48 47 9모 100 89 1 50 50 수학 킬러는 다...
-
얼마 전까지만 해도 오르비에 새벽감성 짝사랑 주접글 쓰고 있었는데 오늘은 왠지...
-
연막 ㅈㄴ치면 좋은 점 10
상대방이 내가 어디 학교 어디 과인지 모름 단점: 나도 내가 뭐로 연막쳤는지 까먹음
-
고딩 때로 돌아가고 싶다 공부 안한다는 전제 하에 다시 가고 싶음
-
재밌다
-
이제 재수를 하는데, 현역 수능 23244(언미화생)였어욥. 수학 때문에 국어도...
-
약뱃 vs 고뱃 4
약뱃 곧 받을거같은데 뭐달까
-
나 개썰리려나
-
다 씻었다 6
어서 자야지 다들 잘자요 좋은 꿈
-
얼버잠 2
잘자요
-
하
-
끝내주게자러가기 2
자러가기 잘자러가기 매우긍정적으로자러가기
-
과자를 먹어야 하는가 15
고래밥먹자
-
코코낸내 3
-
여성은 하등하다 5
-
https://sbz.kr/zdk1D
-
학교 열심히 다니다가 대뜸 수능 보는 경우도 있나요? 0
계획적으로 2학기 목요일은 공강으로 만들어두는 건가 수능 같은 거 다시는 보기...
-
설대 갑니다 4
내년에요
-
관악이 나를 기다린다..!
-
닉값하게된사람 질문받음 53
송도라던가 공부라던가 저녁메뉴라던가
-
기숙학원 옮기기 4
지금 기숙은 잠을 6시간 반 정도 재우는데 진짜 체력 개폐급이라 너무 힘들어요 딱...
-
전자가 과연 몇 정도 높을까요
-
설경내놔 0
글씨가 많이 이뻐졌네용
ㄹㅇ
ㅎㅎ
갓기원
와진짜멋잇어요~
꼽ㄴ
헥
![](https://s3.orbi.kr/data/emoticons/orcon/020.png)
ㅋㅋㅋㅋㅋ뭐야