수학칼럼 (부제:일단 진행시켜)
게시글 주소: https://app.orbi.kr/00071669145
필자약력:작년 한해 고정99
평가원의 공통된 킬러 기조는 한번에 풀이를 끝까지 구상하기 불가능함이다.
문제를 읽고
여러 조건들의 호흡을 맞춰서
명확한 시작점을 찾아야 한다.
1.우선 조건 해석 자체를 한다
2.조건을 엮어 새로운 명제를 이끌어낸다
3.발견한 명제로 어느정도 풀이 진행을 하면 발견적 추론요소가 나올때가 있다(보통 킬러문제가 그렇다)
발견적 추론요소란 더이상 표면적으로 보이는 조건이 없을때 일단 진행을 하면 보이는 새로운 규칙(명제)을 말한다
필자는 1번을 중요시 하는데
1번이 제대로 되지 않으면 3번을 진행할때 ‘일단 해보자’가 ‘뭐든 해보자’가 되어 풀이가 산으로 가기에 그렇다
그렇다면 1번을 제대로 하는 방법은 무엇일까
강기원 선생님의 방식을 인용하면
조건<=>자신만의 언어 혹은 수식으로
필요충분조건으로 정리를 하고
가능한 ‘시각화’를 해야
인지부담을 덜고 조건을 빠짐없이 필요한 상황에 쓸 수 있다
말로는 쉬우니 문제로 바로 가보자
251115이다
원래 미적문제를 쓰려 했지만 확통이들이 서운해 할까봐 공통으로 들고 왔다
문제를 순서대로 읽어도 (가)조건 전까지 할게 없다
(가)조건을 보자
미분 가능하단다
(나)조건을 얼핏보자
도함수가 나온다
기울기,접선문제는 사교육 저격으로 거의 사장당한 현시점
거의 100프로 도함수를 이용하는 문제라 확신 가능하다
도함수 자체를 main함수로 보고 기울기,미분계수 따위가 아니라 도함수의 함숫값을 봐야한다
이제 1번을 한다
더이상 표면적으로 드러나는 정보가 없다
(나)조건을 더 해석하러 간다
그래프는 심심하면,대충 필요할거 같을때? 보다 이럴때 그리는거다
여기서 시각화의 중요성이 나오는데
최고차항 계수가 음수인 이차함수의 도함수는 감소하는 일차함수이고 이걸 f’x오른쪽에 표현을 해줬기에
0오른쪽에서 실근이 하나 생긴다는 중요한 명제를 파악가능하다
여기까지 그리면
x<0에서 이차함수가 실근을
2개 가질지
1개 가질지
가지지 않을지
고민이 된다
물론 1개를 가지는 경우에서 접하는 경우는 맨 처음 조건a=/3root5로 거를수 있긴 하다
하지만 조금만 더 생각을 해보자
구하는값이 범위가 아니라 실제값이다
미지수 a를 처리할 조건이 더 필요하기에 직관적으로 실근 2개를 가지겠고
그래프 관찰을 통해 겹치게 만들어줘야 겠구나란 생각이 든다
케이스가 복잡해 보일땐 무지성으로 진행하기 보단
양 극단을 먼저 조사해 봐야 한다
함수가 어떻게 겹치든 좌 우 양 극단에서 실근이 2개가 나온다를 파악가능하고
우리는 나머지 4개의 실근을 겹쳐줘 2개로 줄여야 하는걸 느낄수 있다
이후에 필자는 4칸 평행이동,실근의 개수를 보고
241122박승동선생님의 수직선 첨자 풀이를 떠올렸다
이후엔 계산만 해주시면 된다
사실 서두에 내용을 제대로 보여주려면 미적문제를 들고 와야 하는데
여기까지 쓰는 필자도,읽어준 여러분도 피곤하니 이만 마치겠다
후속편은 쓰게되면 더 잘써보겠다
읽어줘서 고마워용
과외만관부
0 XDK (+1,000)
-
1,000
-
(설날음식) 마싰게따 마싰게따~ (혈당) 터질께~
-
흰 반팔에 회색 트레이닝 바지에 후드집업 깔별로 돌려 입으면서 뽀송한 상태로 모자...
-
대학 다니면서(아니면 최소 20대때) 만난 사람하고 결혼 그 후에 적당히 개원해서...
-
인생 시나리오 19
PLAN A - 1 : 이화의 -> 대구내려가서 조용히 개원 PLAN A - 2 :...
-
안녕하세요 13
뉴비입니다.
-
인생잘풀리는법 1
강기분수강 새기분수강 우기분수강
-
어떻게 하면 잘 풀릴 수 있을까 일단 지금 너무 꼬였는데 말이야
-
아직 잘 모르겠다
-
ㅠㅠㅠㅠ 8
-
2030년 졸업 2032년 군복무 완료 2033년 대학병원에서 정년까지 끝
-
많이 안 닮았고 한 시간이나 걸렸지만 나도 기만이란 소릴 들어보고 싶구나...
-
제발 떡상좀해주라
-
진짜 여자한테 찝적대는 남자 개좆비호임 개죽이고싶음 얼굴도 ㅈ같이 생겨서 ㅋㅋㅋㅋ
-
치즈규동먹고싶다 0
당당한 치규남.
-
이제 앎 ㅋㅋ
-
고민상담 1
3일동안 치킨이 먹고싶었는데 오늘조차도 배가부름.. 어떡함?
-
1. 과탐 타임어택 과목 (지1 지2 제외 나머지) 2. 국어 비연계 문학 지문...
-
면접붙고 설의입학 설의수석졸업 교수한테 간택당해서 대학원입갤 탈모치료제 발견 후...
-
그냥 내가 살아갈 내 인생은 내 선택의 결정체일 것이고 나는 나를 믿으니깐 내가...
-
수능 = 재능 8
이건 아니지만 적지않은 영향을 미치긴 하는듯 긴장을 덜 타는 것도 재능으로 보려면...
-
129.65인데… 다군침공땜에 무서워요 ㅠㅠ
-
수능 독서 칼럼 제목 "경지에 오르면 할 수 있는 생각들" 벽 느껴지는 독서 실전...
-
1. 수능대박 2-1 약대 전교1등 개원하면 옆에 개국해서 버스타기 2-2 경모공...
-
은퇴 직전 그림 6
-
1. 로또 10만원어치 수동으로 중복구매 2. 1등
-
삼수생의 명절은 조금 따갑다. . . . 휴식!
-
케엪씌 1
쏘쎅씌
-
수능 재능 노력에서 11
재능으로 다들 웩슬러 (fsIQ)얘기 많이 하던데 내가 보기엔 IQ못지않게 물리적인...
-
∞ Σ(a.n -2) =5 n=1 일 때, n+2 lim ( Σ (a.k) -2n)...
-
욕심을 버리자 2
-
노력이라도 해야하는데 그것도 안함
-
1학년때 컴퓨터프로그래밍 교양이 있다던데 파이썬이랑 자바 중에 뭐배우나요??
-
애기피부여붕이쪽지좀
-
볼링장 왔음뇨 2
나 처음인데 계속 0이다가 첨으로 7개했음뇨
-
프로필등록햇어 28
으흐흐
-
설날시즌으로 인생 최대몸무게를 찍어버렸음
-
용안 진짜 뭐지…? 나랑 같은 04가 맞는거냐구…
-
재능충앞에서는 6
한없이 작아지는 나… 죽고싶다
-
너무 OO민지로 활동해와서 갑자기 이 틀을 깨면 너무 어색할 것 같아…
-
1. 어떤 유저의 공부글은 읽고 싶은데 평소에 너무 쓰잘데기없는 글을 많이 써서...
-
빨리 스마트폰의 노예에서 탈출하고싶음
-
벌써부터 설렌다 ㅎㅎ
-
현강 질문 0
러셀이나 두각학원같은 현강학원 가고 싶은데 듣고싶은 분은 현강 전부 마감이라고...
-
보쿠~라 하~루 카제에~
-
350명은 대체 왜 내 프로 필을 본걸까 이해가 안가네
글씨가 많이 이뻐졌네용
ㄹㅇ
ㅎㅎ
갓기원
와진짜멋잇어요~
꼽ㄴ
헥