Orbi지형T_[점수를높이는5M.Column] Ch2.등비수열,수열의합'지형도를그리다'
게시글 주소: https://app.orbi.kr/00071447980
Orbi_Column_김지형T_수1(등차등비수열)_개념.pdf
Orbi_Column_김지형T_수1(수열의합)_개념.pdf
[5-Minute Column]
"Major Past Math Questions
Reflecting Trends"
CH2 Geometric sequence
CH3 Sum of a sequence
오늘 소개해드릴 챕터는 등비수열과 수열의 합 파트입니다. 첨부파일에는 등차수열/등비수열과 수열의 합 개념 부분만 올려두었어요. 이 자료는 현강에서 설명한 내용을 정리한 것으로, 필요하신 경우 다운로드하여 읽어보시면 큰 도움이 될 거라 생각합니다.
등비수열과 수열의 합은 등차수열 파트와 달리, 기출문항 중 중요한 문제는 많지 않아서 개념 위주로 정리하였습니다.
그럼 시작해볼게요!
Chapter 2: 수1 등비수열
(Geometric sequence)
등비수열은 무엇보다 공비를 직관적으로 파악하는 능력이 가장 중요합니다. 등비수열의 핵심은 각 항이 일정한 비율(공비)로 이전 항과 연결되어 있다는 점인데요. 공비를 빠르게 이해하고 활용할 수 있다면 문제를 푸는 속도가 훨씬 빨라질 뿐만 아니라, 다양한 응용 문제에서도 효과적으로 접근할 수 있습니다.
이와 같이 다양한 등비수열의 공비를 빠르게 파악하는 능력은 문제를 해결하는 데 있어 매우 중요한 역할을 합니다. 공비는 등비수열의 구조를 이해하는 열쇠이자, 다음 단계로 나아가는 출발점이 되기 때문인데요. 공비를 빠르게 파악하면 수열의 일반항을 구하거나, 합공식을 적용하는 데 훨씬 수월해집니다.
특히, 미적분에서 자주 등장하는 등비급수를 계산할 때도 공비를 정확히 이해하고 활용하는 것이 핵심입니다. 예를 들어, 등비급수의 합을 구할 때 사용하는 공식은 모두 공비의 성질에서 출발합니다.
공비의 크기(절대값)가 1보다 작을 때, 등비급수의 합은 극한값으로 수렴하게 되는데, 이는 무한급수 문제를 푸는 데 매우 중요한 개념입니다. 이때 공비를 빠르게 파악하고 공식에 대입하는 과정이 자연스러워진다면, 복잡한 계산도 한결 쉽게 해결할 수 있죠.
이번에는 등비수열의 합 증명 과정에 대해 살펴보겠습니다. 등비수열의 합 공식을 정확히 이해하고 유도 과정을 기억하는 것은 문제 풀이뿐만 아니라 수학적 사고력을 키우는 데도 큰 도움이 됩니다. 특히 공식을 단순히 암기하는 것에 그치지 않고, 유도 과정을 이해하면 다양한 문제 상황에서도 유연하게 응용할 수 있게 됩니다.
Chapter 3: 수1 수열의 합
(Sum of a sequence)
**(5)**번 문제는 모의고사 기출문제를 풀 때 종종 등장하는 형태로, 한 번 익혀두면 매우 유용하게 활용할 수 있는 유형입니다. 특히, 이 문제는 **(1)**번과 **(2)**번의 결과를 더해 정리한 것이기 때문에 구조적으로 간단하고 이해하기 쉬운 편입니다.
등차수열과 등비수열의 합 공식은 다양한 문제를 빠르고 정확하게 해결하기 위해 꼭 알아야 하는 핵심 도구입니다. 이 공식들을 제대로 활용하면, 복잡해 보이는 문제도 단순한 계산으로 빠르게 정리할 수 있어요.
오늘 다룬 내용은 비교적 어렵지 않지만, 개념을 몰랐던 학생들에게는 매우 유익한 정보가 될 거예요. 무엇보다 중요한 건, 공식을 단순히 외우는 것보다 그 원리를 이해하는 것입니다. 개념을 제대로 이해하면 다양한 문제에서 응용할 수 있어 학습 효과가 훨씬 커질 거예요.
다음 Column에서는 수학적 귀납법에 대해 다룰 예정입니다. 특히, 작년 6월/9월 모의평가와 수능 22번에서 출제된 문항들을 깔끔히 분석하며, 최근 귀납법 문제가 어떤 흐름으로 출제되고 있는지 한눈에 정리해드릴게요. 이를 통해 귀납법 문제에 대한 이해를 쉽게 높이고, 실전에서 바로 적용할 수 있도록 도와드리겠습니다.
혹시 오늘 다룬 내용을 더 자세히 배우고 싶다면, Orbi 인강에서 확인해보세요. 제가 직접 준비한 강의에서는 개념부터 문제풀이까지 하나하나 차근차근 설명해드리니, 혼자 공부하며 놓쳤던 부분도 확실히 채울 수 있을 거예요. 수학이 점점 자신있어지는 경험을 할 수 있도록 함께 만들어가는 강의가 되겠습니다.
오늘 하루도 화이팅하시고, 더 나은 내일을 위해 계속 나아가 봅시다!
Orbi 강의에서 여러분을 기다릴게요!
유익했다면 좋아요! 팔로우! 부탁드립니다!!!
그리고 수학 질문 마구마구 댓글 달아주시거나 쪽지주시면하나하나 상세하게 답장해드리겠습니다아아아
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
집에가지마 배배
-
qwer모두 선입력이 가능하기때문에 집에가지마 베베
-
지배자잖아 배배
-
벨베스 베베
-
옯스타 홍보 0
오늘하지마 베베
-
버릴까 말까하지마 베베
-
아주 그냥 베짱 장사 하지 마 벱베
-
여캐일러 투척 3
수능 정복 15일차ㅇ
-
오늘 먹을 것 2
김치나베 베베
-
웅엥 3
잉앙
-
수분감 1회독 전과목 풀고 틀린거만 강의 ->뉴냅스 강의로 한번 돌고 -> 수분감...
-
밥이 ㅈ같다는거임 비싼가격에 밥은 적은 내용에 맛도구려서 금방 질린다는거임
-
슬슬 5
집에가지마 베베
-
이번에 연세대만 수시로 붙어서 (정시는 설대식 395.8) 위에 서울대랑...
-
암산테스트... 5
좀 열심히 오래 했음 90 이상은 전 못갈듯...
-
길거리에 잇올 기숙 <<< 이 광고 보고 발작버튼 존나 눌림 진짜 잇올 관련된 것만...
-
범바오가 공통과목을 완강시켜 놓을꺼라는 기대를 해요
-
유니스트 6
디지스트 지스트 But 지베스트 가지마 베베
-
밤새 술 마시기
-
G 6
배가지마 배배
-
대충 시간당 4천원어치 더 일했다
-
흑흐규ㅠㅠ
-
츄라이 츄라이 ㅎㅎ
-
집에가지마 베베 1
오우예에
-
화1생1했는데 좀 노답들인거 같아서 변경 각인데 제 특성이 계산 빠름 두뇌 딸리는...
-
영어 공부 0
원, 투, 쓰리,..., 텐 다음은? 텐원
-
성적대가
-
저격합니다 0
내일함
-
딱대
-
ㅎㅎ
-
강기본 오리진 0
강기본이랑 올오카 오리진이 같은 포지션인가요?
-
참 쉽게 영원할거라 그렇게 믿었었는데 그렇게 믿었었는데
-
술 0
힘드노
-
아니길바랍니다...
-
ㅇㅂㄱ 4
-
과외 준비하면서 보는데 2020년도까진 고1꺼만 들어가는데 21년도부터 고2 내용이 들어가네요
-
얼버기들이 많네
-
그럼 또 매일 놀아야지
-
후ㅡㄴㅁ
-
검찰, ‘이재명 대선 캠프 지원’ 前 국방연구원장 등 기소 1
김정섭 세종연구소 前 부소장도 재판행 감사원, 지난해 검찰에 수사 의뢰...
-
베베
-
7분 4초 남김 만표 146 꺄아아아아앙 아침부터 기분 굿
-
고려대 컴공 2
화작 기하 세지 사문 11211 이면 붙을까요..? (26수능부터 사탐공대 허용)
-
기차지나간당 8
부지런행
-
롤할 사람 구함 1
뻥임
재수했을때 수학 성적 진짜 많이 올려주신 고마우신 지형쌤.. 역시 인강 진출 하실 줄 알았습니다ㅠㅠ
헐 오랜만이야ㅠㅠㅠ 고마워!!! 갠톡좀주세요ㅎㅎㅎ