Orbi지형T_[점수를높이는5M.Column] Ch1.등차수열'지형도를그리다'
게시글 주소: https://app.orbi.kr/00071309544
Orbi_Column_김지형T_수1(등차등비수열)_개념.pdf
[5-Minute Column]
"Major Past Math Questions
Reflecting Trends"
CH1 Arithmetic sequence
Column 1: 수1 등차수열 - 중요한 기출문제 풀이 함께하기
안녕하세요! 오늘은 수학 I의 등차수열을 다루는 중요한 기출문제 풀이를 함께 살펴보려 합니다. 잠시 시간을 내어 5분 정도만 읽어보시고, 풀이 과정을 하나하나 따라가 보세요. 그러면 이 문제가 얼마나 쉽게 느껴질 수 있는지 경험하실 수 있을 거예요.
아래 풀이 내용은 제가 대치동 현강에서 직접 강의한 내용을 바탕으로, 조교님께서 꼼꼼히 정리해 주신 자료입니다. 추가로, 첨부된 파일에는 강의에서 다뤘던 개념 설명도 상세히 정리되어 있으니 참고하시면 더욱 도움이 될 거예요.
특히 이번 강의에서는 4점 문항을 효과적으로 공략하는 방법에 집중했습니다. 여러 문제를 하나의 공통된 풀이 방식(알고리즘)으로 접근했는데요, 여러분도 이 방법을 빠르게 익히시면 등차수열 문제가 훨씬 쉽고 친숙하게 느껴질 거라 믿습니다.
제가 준비한 이 자료가 여러분의 실력 향상에 조금이나마 보탬이 되길 바랍니다. 함께 천천히 익혀가며, 더 큰 자신감을 가져보세요!
(1) 등차수열의 대칭성 활용 문항
작년인 2024년 기출문제에서는 찾아볼 수 없는 유형이지만, 등차수열의 대칭성은 반드시 알아두셔야 합니다. 이 개념은 문제를 푸는 데 중요한 단서를 제공하거든요.
저는 등차수열을 일차함수로 표현해 대칭성을 조금 더 간단하게 이해하고 해결하는 풀이 방식을 사용했습니다. 이 방법은 복잡한 계산을 줄이고 문제를 훨씬 직관적으로 접근할 수 있게 도와줍니다.
천천히 따라오시면서 이 풀이 방식을 익히시면, 등차수열 문제를 푸는 자신감이 더 커지실 거예요.
[2021년 9월 평가원 문항]
[2022년 4월 교육청 문항]
(2) 특정 항의 부호를 결정해야 할 때
최근 기출문제에서는 항의 부호를 나누어 생각해야 하는, 즉 케이스를 분류해야 하는 형태의 문제가 자주 출제되고 있습니다. 이런 유형은 앞으로도 출제 가능성이 상당히 높으니, 여러분께서 특히 집중적으로 학습하셔야 할 부분입니다.
이 문항들 역시 제가 사용하는 공통된 풀이법으로 접근할 수 있습니다. 등차수열을 직선으로 표현해 각 항을 구체적으로 나타내면, 케이스를 훨씬 더 명확하고 간단하게 분류할 수 있거든요.
여러분도 이 방법을 익히신다면, 어려운 문제도 한결 쉽게 느껴지실 겁니다. 함께 차근차근 풀어가며 감을 잡아보세요!
[2024년 3월 교육청 문항]
[2022년 6월 평가원 문항]
[2023년 7월 교육청 문항]
[2024년 5월 교육청 문항]
(3) 특정 항의 값에 집중해야 할 때
이 유형은 최근 기출문제에서 자주 볼 수 있는 유형이에요. 처음에는 계산이 복잡해 보일 수도 있지만, 걱정하지 않으셔도 됩니다. 절대 어렵지 않아요!
문제에서 특정 항의 특징이 제시되어 있다면, 우리는 그 항을 기준으로 계산을 변환하는 습관을 가지는 것이 중요합니다. 이렇게 접근하면 계산이 훨씬 간단해지고 문제 해결도 수월해질 거예요.
여러분도 이 방법을 익히시면 어렵다고 느껴지는 문제도 더 자신 있게 풀 수 있을 거라 믿습니다. 함께 차근차근 익혀보아요!
[2023년 9월 평가원 문항]
[2024년 7월 교육청 문항]
(4) 다양한 등차수열의 표현
이 외에도 다양한 방식으로 표현되는 등차수열을 익히는 것이 중요합니다. 이 부분은 개념서의 등차수열 표현 Part에 잘 정리되어 있으니 참고하시면 도움이 될 거예요.
등차수열을 빠르게 인식하고, 그에 따른 공차의 의미를 빠르게 해석하는 연습이 필요합니다. 이 능력이 갖춰지면 이런 유형의 문제도 훨씬 깔끔하게 해결하실 수 있을 거예요.
참고로, 이 유형은 작년 EBS 교재에서 굉장히 자주 다뤄졌던 만큼 출제 가능성도 높으니 꼭 꼼꼼히 학습해 보세요. 여러분이 더 큰 자신감을 가질 수 있도록 저도 함께 도와드리겠습니다!
[2023년 6월 평가원]
풀이법에 대한 질문이 있으시면 언제든 댓글로 남겨주세요! 여러분의 학습에 작은 도움이라도 드릴 수 있다면 정말 기쁠 거예요.
만약 이 칼럼이 유익하셨다면 좋아요를 눌러주시고, 앞으로도 꾸준히 업데이트되는 칼럼을 보시려면 팔로우 부탁드립니다!
이번 주에는 등비수열, 수열의 합, 수학적 귀납법을 차례대로 업로드할 예정이고요,
다음 주에는 수2의 함수의 극한, 함수의 연속, 미분계수와 도함수를 다룰 계획입니다.
혹시 더 다뤄줬으면 하는 주제가 있다면 댓글로 의견을 남겨주세요. 소중한 의견 참고해서 더 알찬 내용을 준비해보겠습니다. 개인적으로 궁금한 점이 있으시면 쪽지로 문의 주셔도 언제든 환영이에요!
참고로, 오르비 인강 촬영에서도 이 내용을 정리해 깔끔하게 강의해 업로드할 예정이니 기대해 주세요.
그럼 저는 또 열정 가득한 강의하러 떠나보겠습니다! 여러분, 오늘도 화이팅입니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
네...
-
손가락으로 개수셀때 이진법으로하면 1024까지 ㄱㄴ 8
차라리 그냥푸는게 더 쉽겠지만
-
흠
-
아 수1 드릴드 2
작년에 격자점 개수세기 이런거 갑자기 수능에서 나오면 어카지 이 생각에 안거르고...
-
다시 한번 시도해주시면 감사하겠습니다. 하루 만에 급하게 만든 거다 보니까...
-
손가락<---ㄹㅇ 고트임 일단 10개 이하는 절대 안 틀림
-
얼버기 3
ㅎㅇㅎㅇ
-
예비고3인데 모고보면 90초 정도 뜹니다. 뭔가 영어를 전체적으로 읽긴읽는데...
-
아직 해본적 없음
-
3코어만 떠도 eq평궁 하면 마저 안올린 상대 원콤내는데
-
국어 모고 낮1정도 나오는 team 07입미다.. 모고 볼때마다 언매 한두개씩...
-
.
-
드랍.
-
베르테르 7번 14
걍 귀찮아서 한번에 올림
-
평가원+교사경 문제선별이라고 써있는데 서바 브릿지 기출도 껴주나요???
-
하면 무휴반 할듯 이유도 ㄱㄱ
-
네 전혀... 물론 그 쌤도 잘생긴편인데 느낌이 많이 다른데 왜지
-
단순 암기를 너무너무 싫어하는데 생윤은 서양윤리부터 좀 힘드네요ㅠㅠ 생윤은...
-
어디로 런치세요?
-
레전드사태발생ㅋㅋ 18
02시까지 폰연등 ㄷㄷ
-
에루사랑해 3
-
제얘기임
-
협곡갈게요 11
유베사수생오늘도협곡행..
-
많이 들었는데 이름 머였지 지금 검색해보려고 했는데 생각이 안 남
-
좋은 것 같습니다
-
맞팔구 4
ㄱㄱ
-
수능보단 훨씬 어려움??
-
큐브 3일차 6
답변 50개… 근데 이거 질문 잡기가 너무 빡세네요ㅜ
-
이런 거 수능에서 만난다고 생각하면 참... ㅋㅋ
-
3만명 넘을까요
-
여러분 시험 성적표 6모, 9모도 받을 수 있나요? 5
온라인으로??
-
미기과탐 가산 다잇던데,,
-
하나는 이름 실모단으로 지어서 수학만 시키고 하나는 담요단 해서 사탐만 시키는 중
-
조교 쉽지않네
-
못생기면 인생난이도가 너무높다는것
-
문제 읽는거조차 힘들어요 그저 갓가원
-
최상위권 맞춤 과외를 제공한다는건 양심 어디다 팔아먹은거임? 실존해서 말하는거임
-
이왜진
-
생윤 어렵나 0
흠냐리
-
누군가가 풀기에 따라 풀기 시작한 베르테르 77제 13
나도 풀이 올릴랭 4번 5번 6번 7번 심플 이즈 베스트. (그림 비율 제발 어케...
-
연고 국문과 12
올해 각 학교 문과에서 1~2등 찍는다는듯
-
저희 학교 시험이 조금 어려운 편이고 생1은 백호t 섬개완 듣고 있는데 이후에...
-
샤워해야되는데 4
물리나할까
-
새터,재수 질문 0
중앙대나 건국대 걸고 재수하려고 하는데 새터 필수일까요?
-
지금 스블 미적 살까말까 고민중인데
-
더 chill나 보도록 노력하겠습니다
-
작년 내신 생명 공부 했던 게 머리에 꽤 남아있어서 굳이 섬개완 말그 스개완으로...
-
안녕하세요. 합격자 후배님들! 저는 인하대 영어영문학과 22학번입니다. 인하대에...
와아 첫 좋아요 감사합니다!!!! 잊지 않고 기억할께요오
오 감사합니다ㅎㅎㅎㅎ 더 필요하신거 있으실까요??
와 좋은 풀이네요
참고하겠습니다. 선생님 :)