합성함수 인식부터 치환적분까지
게시글 주소: https://app.orbi.kr/00069306012
문제 같이 읽어보겠습니다.
뭔가 그림 그리고 싶다는 생각이 듭니다.
이 정도로 그리면 되겠습니다. 노란색 동그라미 친 건 미분계수입니다.
문제를 마저 읽어볼게요
아, f(x)가 아니라 f(2x)래요. 그것도 그려줍시다.
x=1에서 미분계수가 2인거 바로 보이시나요?
이쯤에서 잠깐 딴 얘기로 샜다가 돌아오겠습니다.
(딴 얘기)___________________________________________________________________________________
이건 cos함수에 5x를 합성한 함수입니다.
5x는 x보다 다섯배 빠르게 진행되기 때문에,
cos5x 함수는 cosx 함수에 비해 모든 대응되는 구간에서 다섯배 빠르게 변합니다.
미분계수가 다섯배인 셈이죠.
또 다섯배 빠른 진행속도 덕분에, 함수는 다섯배 축소됩니다.
(딴 얘기 끝)________________________________________________________________________________
이런 이유로, 앞선 문제에서
이렇게 그릴 수 있던 겁니다.
이제 문제 마지막 부분 읽어볼게요.
음.. 이건
f(2x)의 그림만 보고 a는 1이고 b는 1/2이라고 읽으면 됩니다.
긴 설명 대신 그림 2개면 충분할 겁니다.
함수 그림은 냅두고
x, y 축만 샥 바꿔주면 됩니다.
우리가 잘 알고 있는
이 사실을 수식적으로 이해해도 좋지만,
저는 때에 따라 조금 더 기하적인 느낌으로 이해합니다.
이렇게 말입니다.
앞선 예시도 이런거였죠.
하지만 이 얘기는 f(x)와 f(3x)처럼 단순히 일차함수를 합성했을 때만 쓸 수 있는 얘기가 아닙니다.
다음 문제로 넘어가봅시다.
지수함수 f(x)에 대해 다음 값을 구해야 하는 상황입니다.
가독성을 위해 엄밀하게 적지는 않았지만 다 이해하셨을거라 생각합니다.
일단 절댓값 f(x)부터 그려봅니다.
-1에서 미불이고, 이때 오른쪽 미분계수는 ln2입니다.
이제 어떤 빨간 점이 이 곡선경로를 쭉 따라간다고 해봅시다.
이 빨간점은 y=x세제곱 함수의 속도로 곡선경로 위를 움직이는 중입니다.
y=-1일 때, x세제곱 함수의 미분계수는 3입니다.
따라서
여기 -1 부근에서 빨간점은 경로를 3의 속도로 지나가는 중입니다.
아까 문제에서 h'(a+) 구하라고 했었죠.
3의 속도로 기울기 ln2인 구간을 지나는 중이니까 답은 3ln2입니다.
근데 삼차함수에다가 대고 막... 속도 개념을 부여해도 되는걸까요?
또 잠깐 딴 얘기로 샜다가 올게요.
(딴 얘기22)___________________________________________________________________________________
아까 cos 5x는 진행속도가 일정한 경우였습니다.
그런데 진행속도가 일정하지 않을수도 있습니다.
(예전에 제가 썼던 칼럼 일부를 인용해왔습니다)
앞서 언급했던
이 사실이 이러한 이유로
이렇게 인식될 수 있는 겁니다.
시간 있으신 분들은 아래 기출 문제 풀어보세요.
귀찮으면 넘어가시구요
답은 19+20= 39입니다.
알려드린 걸 통해 풀면 인식하기가 훨씬 쉬울겁니다.
(딴 얘기 끝)________________________________________________________________________________
아직 할 얘기가 많이 남아있습니다.
합성함수 인식은 결국 치환적분의 얘기로 이어집니다.
다만 이번편에 다 쓰면 너무 길 거 같아서, 다음 편으로 넘길게요.
좋아요랑 팔로우 누르고 기다려주시면 곧 돌아오겠습니다 ㅎㅎ
0 XDK (+10)
-
10
-
씨발 나 내년 수능 응시해야된다고
-
.
-
의사의 승린가
-
이제 끝난건가 0
설마 윤석열이 이걸 예상 못했으려나 더 있을수도
-
이상입니다.
-
어휴
-
근데 이러면 1
당장 내년 수능부터 어떻게 되는 거임
-
계엄령 내린건 2
다 이유가 있겠지
-
지렁이도 밟으면 뭐한다? “꿈틀”한다~
-
계엄해제 민주당 집권 중앙대 출신 대통령 탄생 탄핵유력
-
아가 자야지 2
모두 굿나잇
-
윤통 측에서 계엄포고령을 근거로 국회 의결 무효라고 나올 것 같음 포고령 1항이...
-
군인들 개인이 그냥 포기하고 가도 되지 않나
-
포고령 1번이 국회 어쩌고라서 령 이라서 국회보다 못하나
-
2036학년도쯤 수능에 나올려나
-
두 눈으로 보다니...
-
무한선포하면 되는거 아님?
-
빨리 해제해 0
…
-
뭔 한나라의 대통령이라는 양반이 3시간 계엄하고 끝나버리노
-
나라가 이모양이지
-
끝? 0
여튼 옯생 첫 이륙 감사하빈다
-
회원에 의해 삭제된 글입니다.
-
자 박수~ 1
ㄹㅇ 역사적인 순간이다
-
대체 뭔 생각이지
-
하 어떡하죠 1
12월 8일 동국대 면접인데 정상적으로 진행될까요??
-
다음에 이런상황이 오면 무서울듯 하다. 역사 잘 배워놓고 이런상황 안오게 하자
-
[속보] '비상계엄 해제 요구 결의안' 국회 본회의 가결 1
[속보] '비상계엄 해제 요구 결의안' 국회 본회의 가결 당신의 제보가 뉴스로...
-
이제 탄핵도하자 0
집가지말고 저기서 그대로 탄핵못함?
-
환율 급락 ㅋㅋ 0
머노
-
이게 뭔 ㅈ밥 같은 짓거리지 이럴 거면 계엄령선포는 왜 함?ㅋㅋㅋㅋ
-
진짜 나라 난리남 ㅅㅂ
-
걍 진짜 기능 테스트였던 건가
-
이제 해제하나?
-
???
-
끝났어 ㅋㅋㅋㅋ 0
ㅋㅋㅋㅋㅋ
-
조까하는순간 바로 위헌이고 탄핵사유임
-
이게 진짜 뭐지 3
-
이제 무시하면 9
어케됨? 헌법이고 나발이고 이미 다 어겼는데 ㅋㅋㅋ
-
그분 이기나?
-
자이스토리 독해 기본 사려는데 2025 아직 안나왔는데 그냥 2024 풀어도 되겠죠?
-
앞으로 국회의원 못함
-
해제를 하겠는가 무시하겠는가
-
ㅜㅜ
-
개빠르네 ㄷㄷ 0
ㄷㄷ
-
해제ㅋㅋㅋㅋㅋ 2
대한민국 역사상 가장 조루같은 쿠데타였다
-
정상화 됐다 0
휴
-
다행이다 0
오 cos2x 같은 일차항의 계수만 달라져서 합성된 상황만 x축 방향 축소로? 알고 있었는데
이차함수같은 게 합성되어 있어도 되는 느낌이네요
특정한 한 지점에서는 이차함수도 지수함수도 직선으로 근사할 수 있기 때문이라고 생각해도 되겠습니다
무민은좋아요
라끄리식수학적사고ㄷㄷ
https://orbi.kr/00064989284
그동안 쓴 칼럼 리스트입니다. 필요하신 분들 참고하세요
진짜 좋은 칼럼
우와...
식으로 파악하던걸 가시화해주네요
간단하보이지만 누군가 이런걸 정리해주지 않으면 써먹기 쫄리던데 감사합니다!
신기방귀
f(x)를 g'(x)의 속도로 지나가고 있다고 해야 맞을듯
g(x)의 속도 (=g’(x) )로 지나간다는 의미였습니다.
저도 둘 중에 뭘 쓸까 고민했어요
말씀해주신 것처럼
g’(x) 의 속도라 해야 와닿는 거 같기도 하네요
좋은 지적 감사합니다 ㅎㅎ
그러면 "g(x)와 같은 속도“는 어떤가요?
합성함수기울기=각위치 겉속 기울기의 곱
엔축공부하면서 떠올렸던 건데
속도개념으로 볼수도있군요!
goat...
와 제가 이해한방식이랑 거의 유사합니다
정돈된 버전?
남들한테 퍼지는게 아까운 수준의 글이네요
딴얘기, 딴얘기 끝이라고 표현해놓은게 왜이리 귀엽게 보이지ㅋㅋ 잘봤습니다
저 다 봤어요 이제 내려주세요
개추
좋은칼럼 잘보고갑니당