140621(A) 이해 안 가면
게시글 주소: https://app.orbi.kr/00069095742
ㅠㅠ이것만 붙들고 있는 중이에요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
1세트랑 3세트는 진짜 피말려뒤지는줄알았음
-
페이커 파엠 안주면 진짜 주작이다
-
45세트 역대급 명경기
-
이제 수면 2
-
Mvp누구냐 4
이미 결정남ㅋ
-
갈리오 밴했을듯 ㅋㅋ
-
진짜 제정신이 아니었음 매치포인트 따인 상태에서 밀리는 와중에 뒤집어엎고 마지막은 갈리오
-
울거 같네 2
이새끼는 어떻게 이렇게 잘하냐
-
갈리오 캬 1
ㅋㅋㅋ
-
대상혁 6
-
탈릅은 면했네요 4
-
“올려”
-
와 진짜 ㅋㅋㅋ 0
파엠도 확정임 100퍼 ㅋㅋㅋ
-
GOAT
-
대 상 혁
-
진짜 대상혁 신상혁 짱상혁 알4개 상혁 주인님 진짜 끼잉낑 진짜 주인님 진짜 진짜 진짜 사랑해요
-
역시 대 상 혁 0
젠장 또 대상혁
-
월즈 5회 우승 0
진짜 대상혁 ㅋㅋㅋ 새벽을 투자한 보람이 있었다 ㅇㅇ
-
대 상 혁 1
대 대 대
-
아니이거진짜미친거아냐
-
이겼다 0
와 대박!!!
-
갈리오를 풀어???
-
대상혁 0
ㅋㅋㅋㅋ
-
불사대마왕 2
진짜 왜안죽음 ㅋㅋㅋ
-
이겨라 넌
-
와진짜 ㅋㅋ 0
노인네 뭐임? 어ㅡ ㅋㅋ하 도파민
-
롤드컵 보면 롤이 너무하고싶어질 것 같아서 안보는 중
-
크아아아아아아악 0
최후의 핑퐁
-
그냥 져도 파엠 확정임
-
대 오 너 0
ㅋㅋㅋㅋㅋㅋㅋ
-
Nnnnnnnnnnnnnnnneeeeeeerrrrrrrrrr
-
롤 우승 6
어케해야지 이기는 거임ㅍㅍㅍㅍ??? 룰을 진짜 아예모르는데 계속 보는 중 재밋어서
-
실모 0
수학2 맞는게 목표인데 실모를 꼭 풀어야할까요 제 생각은 그냘 드릴5 4 서킷...
-
자기글러서 0
공부해야할거 같음
-
롤드컵 1
재밌나요? 롤 몰라서
-
롤체하다보니까 챔피언 이름들만 좀 앎..
-
안녕하세요 예비 고3 정시파이터입니다. 이번 9모기준 33411의 성적을 받았습니다...
-
수학 n제 0
제가 지금 서킷을 하루애 하나씩 풀고있어서 12번까지는 커버할수있을거같은데...
-
이거 다보면 잘 수 있을까 잠이 안 옴
-
진짜 무서운점. 2
저 조합 상대로 지면 평생 조리돌림 당함. 제발 티원 가보자
-
5세트는 이게맞아
-
자르반이요????????????
-
탈릅할께요 구라임
-
밤하늘의 별~
-
파이팅 0
첨보는데 롤드컵 ㅍㅇㅌㅍㅇㅌㅍㅇㅌ
-
이걸 못봐
-
드릴4or설맞이 1
드릴4를 풀까요 아니면 설맞이를 풀까요
-
그것이 5판 3선승제니까…
이게웨
f‘(x) 부호변화를 관찰하는 게
잘 이해가 안 갈달까요..
ㅋㅋㅋ 중3 ㄱㅇㅇ
a가 양수면 극대 5가 안나오는구마잉
객관식의 힘 선지를 보고 a 부호 유추 가능
21이면 킬러급 아닌가?
객관식은 선지를 최대한 이용하시게
미지수가 나온 경우엔
미지수에 따라 근본적 변화가 나타나는지 생각하는 게 중요해요! Fx가 x+a 일때 f3이 2이다 이런건 a가 그냥 미지수지만 |fx|의 개형을 본다면 a가 양수인지 음수인지에 따라 케이스가 나눠지죠.
저 문제도 a의 부호 (0일때) 에 따라 개형 자체가 변하기 때문에 케이스를 나누는 것 자체가 요구사항일겁니당
1. x=a를 포함한 어떤 열린 구간에서 미분 가능한 함수 g(x)가 있을 때, g(x)가 x=a에서 극값을 가진다면 g'(x)=0이므로, g'(x)=0을 만족하는 x_1, x_2, ... 를 구하여 x=x_i (i는 자연수) 에서의 g(x)값을 조사해보자
2. a라는 상수의 부호를 알 수 없고, a의 값에 따라 함수 f(x)의 그래프 개형이 바뀌므로, a>0일 때와 a=0일 때와 a<0일 때로 상황을 나누어 생각해보자
이 두 가지 생각을 바탕으로 접근한다 생각을 정리해보시면 도움이 될 것이라 생각합니다! 풀이를 이어가자면, a>0이면 함수 f(x)는 x=-1과 x=루트(a/3)에서 극솟값을 갖고, 극댓값을 가질 때가 없으므로 모순이 발생
a=0이면 함수 f(x)는 x=0에서 극솟값을 갖고, 임의의 음의 실수 p에 대해 x=p에서 극솟값과 극댓값을 동시에 가지므로 모순이 발생
a<0이면 함수 f(x)는 x=-1에서 극댓값을 갖고, x=0에서 극솟값을 가지므로 극댓값이 5라는 것을 계산해주면 a값 결정 가능
따라서 f(2)값도 구할 수 있다.