보고갔으면 하는 작년 평가원 두 문제 풀이
게시글 주소: https://app.orbi.kr/00068983228
2023년에 출제된 평가원 문제 중 두 문제의 풀이를 보여드릴 겁니다.
둘 다 제 현장풀이입니다.
특히 두 번째는 의외로 저처럼 본 사람이 많이 없더라고요.
공부하는 데에 도움이 됐으면 좋겠습니다.
1. 6월 21번 지수로그
그래프를 둘 다 움직이는 건 너무 비효율적이에요.
하나는 고정시키고, 나머지 하나만 움직입니다.
이렇게 식을 변형해서 말이죠.
이제 좌변의 함수를 어떻게 인식하냐가 관건인데요,
저는 이 초록색 함수를 오른쪽으로 t만큼, 위로 t만큼 평행이동한 걸로 인식했습니다.
그리고 지수함수의 평행이동을 다룰 때는 점을 잡고 인식하는게 좋은데요,
무슨 말이냐면
빨간색 (0,-1) 점을 x, y방향 각각 t만큼 보낸다고 생각하는 겁니다.
그럼 우리는 이 빨간점의 자취를 쉽게 떠올릴 수 있어요.
그 선은 y=x-1이 되겠습니다.
(문제의 ㄱ을 풀면
주황색 직선과 로그함수가 x좌표가 각각 1, 2일때 만난다고도 알 수 있습니다. )
이 주황색 직선을 기준으로 지수함수를 이동시켜주는 겁니다.
예를 들어
이런 느낌으로 말이죠.
본인은 빨간점을 움직이는 중인거고, 나머지 부분은 알아서 딸려오는 느낌으로요.
이때 지수함수와
로그함수의 교점 x좌표가 f(t)일 것이고,
주황직선과의 교점 x좌표가 t일 겁니다.
이 관찰 방법은 ㄷ에서 빛을 발하는데요,
머리 쓰지 않고 그냥 시각적으로 명제를 확인할 수 있습니다.
이 그림처럼 t가 1과 2 사이에 있다면,
f(t)<t 입니다.
따라서 ㄷ은 틀린 말입니다.
첨언하여 그 외 구간에서는 f(t)> t 라는 것도 확인가능합니다.
남은 한 문제는 미적분인데요,
미적분 선택자 아닌 분들은 도움되셨다면 좋아요 눌러주시고 갈 길 가시면 됩니다
2. 수능 28번 확대축소
당연히 x<0일 때 f 그리고 시작합니다.
이 정돈 미분이고 뭐고 필요없이 바로 그려야 합니다.
이제 2g+h=k에 대해 감을 잡아야 하는데,
아래와 같이 보는 것도 방법입니다.
t를 0으로 보내보면 g도 0으로 갑니다.
즉, h가 k로 가야 합니다.
그리고 t가 조금씩 위로 올라갈 때,
g감소량의 2배만큼을 h가 증가해줘야 전체 합이 유지될 겁니다.
그림으로 보면 이런 느낌입니다.
매 순간 오른쪽 날개가 검정 선으로부터 2배 멀리 있어야 합니다.
즉, 왼쪽 날개를 두 배 확대한 셈입니다.
그럼 자연스럽게 오른쪽 날개는 이 연두색 식과 관련이 있다고 눈치챌 수 있습니다.
만약 바로 안보이셨다면, 아래 과정을 찬찬히 따라오세요.
우선 왼쪽 날개를 y축 대칭시킵니다.
x자리에 -x를 넣는겁니다.
그 다음 빨간 날개를 2배 확장시킵니다.
x 자리에 x/2 를 넣는 겁니다.
그럼 아까 말한 그 식이 나옵니다.
근데 이 식 적분하기 참 좋게 생겼습니다. 적분함수가 바로 보이실 겁니다.
x가 2일 때 적분값이 e^4 -1이네요.
그 뜻은,
k가 5라는 겁니다. 그래야 7까지 거리가 2니까, 적분값이 딱 e^4 -1이 되겠죠.
남은 과정은 매우 쉽습니다.
답은 2번입니다.
이 문제에서 챙겨갈 점이 있다면
1. 2g+h=k를 감각적으로 인식해보기
2. 확대축소 감각
정도가 있겠습니다.
다음엔 좀 재밌는 글을 가져올 거 같아요. 기대해주세요
도움되셨다면 좋아요 팔로우 누르고 가주세요
#무민
0 XDK (+10)
-
10
-
ㅈㄱㄴ 일단 스카이는 다 보고
-
05형님들이 수능보고나서 11월말쯤에 같은 반애들끼리 이제 정시 시작이라고 같이...
-
수능끝난날부터 아침저녁 신경안쓰고 무지성으로 깰때까지 수면, 배고플때 밥,...
-
따뜻한 물에 삶아지는중 노곤노곤
-
효용이 없다 이런걸 말하려는건 아니고 읽는걸 잘 못하는 사람이 읽는법을 읽어서...
-
인강 완전 대체로 독학서느낌? 같긴한데
-
사탐신규커리 0
보통 언제나옴?? 정법이랑 생윤 할 거 같음
-
무지성 토익 신청함 15
걍 가면 몇 점 나옴?
-
아예 균형을 잃는 것도 하나의 방법일 수 있음. 균형을 잃고 거기서 추진력을 얻어서...
-
저들이 나와같은 인간이라는게 믿기지않는 압도적으로 똑똑하거나 성실하거나 아름답거나...
-
흐어
-
비문학 독해 연습 드가자...
-
가슴 한 켠에 증오 대신 문학을 담고 오늘의 끼니보다 내일의 희망을 노래하는 사람이 되고 싶어요
-
국어 공통 김승리 풀 커리 언매 유대종 수학 예체능이라 X 영어 션티 or 이명학...
-
남초 입시커뮤에 왜 여시충 아줌마가 와서 여대관련 이슈만 보이면 아득바득 달려와서...
-
앞으로 데이터사이언스, 데이터분석 관련 직군이 더욱 늘어날거라 미래에 배팅한다고...
-
수능에선 걍 잘풀고 답맞추면 장땡이지 수험생입장에서 강사가 출제자의도를 보여주니...
-
두 문제 틀렸는데 그럴수도 있음?
-
1. 의사 면허가 모든 것을 책임져주는 시대는 언젠간 반드시 사라질 것 같다....
-
경제하다와서보면얘는ㄹㅇ..
-
올해 지구 1
50 50 47인데 과외 경쟁력있음? 근데 이제 수능찍맞n개를 곁들인 ㅋㅋ
-
머가 더 지금시기에 와닿음?
-
ㅇㅈ 2
ㅇ
-
안녕하세요 사탐,과탐 둘 다 노베이고 어느것을 할까요? 미리 경험하신 분들께 조언...
-
기출 푸는데 갑자기 미적기하 선택에서 그런거 없어지고 기하랑 다 들어있길래 뭐지...
-
신선하다는 의견을 많이 봤는데… 그냥 사설에서 나오는 유형 아님??
-
수학 잘하려면 2
수학 개념을 다 익히고 문제푸는거에요 아니면 개념 보고 바로 문제를 풀어서 개념을...
-
시험장에서 공통 은 잊어버렷는데 미적이 존나 어려웟어서
-
1컷 84~85면 내가 승
-
하ㅠ
-
아..적당히 해야지
-
님들 과외 어디서 구함 14
답답하네
-
반수하신분들…. 4
반수에 도움되는 조언 한마디씩만.. 부탁드립니다… 무휴반해야할수더 있고요…....
-
안녕하세요! 부산진학지원단 가채점 통계자료와 실채점 결과를 활용하여 '올해는 어떻게...
-
끊어야하는데 하.....
-
오늘은 6승 3패 막판 탑 케틀 후픽 박은 새끼야 다신 만나지말자
-
걍 일러 투척 7
-
문과면 메가패스 2
살 필요가 없지 않나요..?
-
김범준T 0
확통하는 문과 3등급이 듣기엔 어려운가요
-
고전시가 질문 5
제가 답을 고를때는 나열하는거같아서 기대감은 안드러났다고 생각했는데 답지에는...
-
27수능때 과탐 장례식이라 전례없는 핵폭탄과탐 내야되는데 국어까지 불로내긴 좀...
-
자러 갈까요 8
미적을 더 하고 싶기도 사실 한 페이지밖에 안 함뇨..
-
전전은 당연히안되는걸로알고 자전융힙이나 신소재화공쪽이요
-
이동준 강기원 0
예비고3이고 시대 둘다 신청 성공해서 갈수있는데 두분 병행하면 많이 빡셀까요?...
-
기본으로 4그릇 이상먹었고 아직도 카레 8그릇 먹은게 기억남 치킨 1마리 먹어도...
-
지옥2 보면서 느낀건데 유아인 연기는 진짜 대체불가인듯
-
아
-
다들내가많이좋아하는거알지 현실친구가없어서 난너희들밖에없어
-
왜 여자아이들이나오냐 ㅅㅂ 톰보이는 혁오아니냐?
무민은 유명한 수학의 신임
첫문제 최적화 어떻게 해야하지 고민했는데 너무 명쾌하네요 감사합니다
씹 고능아 풀이네요 ㄷㄷ
저거 현장에서 k를 정해진값이라고 봐서 개말리고 못풀었음..
K고정값 맞지않나요..? ㅠ
고정값 맞아요. ”k의 값이 주어지지 않았을 뿐“
미지수 x와 상수a는 무슨차이일지 곰곰히 생각해보심이
고정값인건 쉬운데 대다수가 저게 양수값으로 일정할줄 몰랐겠지. 연속이라니 당연히 0만 떠올렸을듯
아니 6평 21번 풀이 대박인데요?...좋은풀이법 얻어갑니다
확대축소 좋죠
나만 아는 게 아니라서 아쉽네요(?)
좋은 글 감사합니다
28번 왜 5번이 아니냐고 화냈던 기억이
첫 문제 저도 저렇게 풀었는데 반갑네요
과외할 때 여러 토픽 중에 “대소비교는 같은 카테고리로 해라!”라는 토픽을 가르칠 때 예시문항으로 종종 써먹습니다
캬
와 저도 어렴풋이 28번 풀 때 늘이고 0으로 채웠던 기억이 있어요..!!
몇 분 동안 뚫어져라 쳐다보고 번뜩 생각이 들었던 것 같네요
이게 “어? 연속이면 k=0인거같은데?“ 이렇게 직관적으로 봐서 저도 틀림.
중요한건 “k값이 0이아니면 어떻게될가?” 를 간단하게라도 생각해보는것이 중요한듯요.
나무를 보는게 아니라 숲을 보는게 중요한듯