근의 분리 상위호환
게시글 주소: https://app.orbi.kr/00068358303
과외준비를 하다가 이번 6모 15번과 작년 9모 13에가 어떤 관점이 동일하게 쓰인다는 것을 알았는데요,
특히 9모 13번을 이렇게 푸는 것은 처음 봤다고 하네요.
앞으로 근의분리는 쓰지 마세요. 오늘 알려드리는 이 방식이 근의 분리를 거의 완전히 대체할 수 있습니다
(글 맨 마지막에 조건 달아뒀습니다.)
사실 저는 그렇게 특이한 접근인지는 모르겠습니다. 수학(상)을 열심히 공부했다면 이게 가장 자연스러운 접근이죠. 아무튼 과외생을 보며 이걸 여러분께도 소개해드리면 나름 의미가 있겠다고 판단되어 글로 쓰게 되었습니다.
일단 이번 6모(2025학년도)입니다. 문제를 다 풀진 않을거고, 맨 마지막 부분만 볼게요. (나) 조건을 통해 k=2인 것까지 구한 상황입니다.
k=2니까 g(x)가 미분가능하려면 f(2)=2, f'(2)=2여야 합니다. 최고차항 계수가 1인것도 아니까, 문자 하나만 가지고 식을 세울 수 있습니다.
이렇게 말이죠.
(가) 조건에 의하면, 얘가 x가 2보다 큰 곳에서 항상 증가해야 합니다. 그럼 당연히 도함수 관찰을 해야겠죠.
아, 센스 있게 2만큼 왼쪽으로 평행이동해서 봐도 되는데(저도 풀 때 그렇게 했구요) 헷갈리는 독자도 있을 수 있기에 여기선 그대로 갈게요. 괜히 과정 추가하지 않겠습니다.
아무튼 미분해보겠습니다.
냅다 판별식 쓰면 안 된다는 것은 알고 계실겁니다.
함수가 x축과 두 번 만나지만 x가 2보다 클 때는 x축보다 위에 있을수도 있으니까요.
난 그냥 그렇게 해서 맞았는데? 하시는 분들은 운이 좋으신 겁니다. 이 문제에선 결국 그게 답이긴 하더라구요 ㅋㅋ
여기서 a 범위를 나눠서 푸는 분들도 있습니다.
그건 올바른 풀이지만, 완전히 상위호환인 다른 풀이가 있어요. 그걸 지금 알려드리겠습니다.
일단 부등식에서 모르는 문자가 있는 부분을 넘겨버립니다. 그 뒤에 기하적인 의미를 부여할겁니다.
왼쪽은 완벽하게 그릴 수 있는 이차함수고, 오른쪽은 (2,0)을 지나면서 a에 따라 기울기가 달라지는 직선이죠.
이때 “직선이 항상 이차함수보다 아래에 있어야 한다” 라고 해석해주시면 됩니다.
그럼 기울기가 점점 가파라지다가 딱 접하는 순간까지 가능하겠죠? 그때보다 기울기가 더 커지면 직선이 더 위에 있는 순간이 생깁니다.
반면 기울기가 음수라면 음의 무한대까지 계속 가능할 겁니다.
x가 2보다 큰 곳에서는 여전히 아래에 있기 때문이죠.
그럼 접하는 순간 계산해볼게요.
a는 플마 루트 6인데, 둘 중에서 우리가 원하는 순간은 -루트 6일겁니다. 그래야 빨간 직선의 기울기가 양수가 되기 때문이죠.
a의 범위는 -루트6보다 크다가 되겠네요.
2024년 9평 13번에도 이걸 적용해볼게요.
저도 이렇게 빨리 풀릴 줄 몰랐는데, 아주 빨리 풀 수 있습니다.
얘도 당연히 도함수를 관찰해야겠죠.
연두색 영역에 도함수가 그려져야 합니다. 파란색 함수처럼요.
반드시 (-1,0)을 지나야 하겠네요.
왼쪽 함수에 대입해봅니다.
b=2a-1이 나오겠네요.
도함수의 오른쪽부터 관찰해보겠습니다. 아까 했던 거 똑같이 할게요.
a범위 구했습니다.
왼쪽에서 새로 추가되는 조건은 없습니다. 이미 이 조건만으로도 왼쪽 구간 함수는
y절편이 양수고
(-1,0)을 지나므로
아까 말한 연두 구간에 그려집니다.
우리가 구해야 하는건 a+b의 최대최소 즉, 3a-1 의 최대최소값입니다. a 범위를 아니까 다 구한 셈이네요.
네 여기까지입니다.
부등식으로 인식한 뒤에 약간의 변형을 가해주어서 기하적으로 관찰하는 방법을 알려드렸습니다.
문자범위 나눠서 하는 것보다 훨씬 빠르고 실수 확률이 적은 풀이라 생각합니다.
한 마디 덧붙이자면, a로 묶인 부분이 기하적으로 깔끔하게 해석이 가능할 때 이 방식을 쓸 수 있습니다.
그럼 언제 깔끔한 해석이 불가할까요?
a의 계수가 이차도 있고.. 일차도 있고 이런 식으로 여러 개가 있다면 기하적 의미를 부여하기 힘들 겁니다.
즉 문자 계수가 하나로 한정된 상황에서는
이 방식이 근의 분리를 완전히 대체한다고 말할 수 있겠네요.
다음에 또 좋은 글로 찾아뵙겠습니다. 감사합니다.
0 XDK (+1,010)
-
1,000
-
10
-
저 핑크 형광펜 친부분이 이해가 안가요ㅠㅠ 제가 이해한 내용 동일성사고...
-
나는야 바나나킥 중독자ㅏ~~
-
대학 졸업 후 취업을 중요시 여기고 있습니다.
-
저 고민이 있음 4
남편이 아내가 3명임 내가 마지막으로 들어옴
-
사탐런 변환표점 0
지구사문 상위10대학 공대 희망하는데 사탐런 변환표점? 때문에 너무 위험하다하는...
-
저, 속 충전 해주세요오옷...♡
-
여기 너무 예뻐 18
경희대본관에서노상맥주하고 평화의전당등반ㅎㅎ 다들경희대한번씩와봐 너무낭만있어
-
메인 가보고 싶어요.. 20
오르비 한지 곧있음 2년째 가까워지는데 금테를 다는 날이 올줄이야... 금테를 올린...
-
정신과 약 다 떨어졌네 24
죽고시픔 아
-
화공 가지마라 5
화공 망했다
-
공부하기 싫다 2
학기내내 시험기간인 것 같다...
-
아직 카드풀이 좁은데도 재밌는거 보면 나중에 카드 많아지면 개꿀잼일듯
-
쓰고다니기 ㄱㄴ?
-
적당한거 아닌가ㅋㅋㅋ
-
했. . .
-
아직은 추상적이지만 타지로 혼자 떠나 맨바닥부터 무언가를 일궈내고 싶은데 그저...
-
안녕하세요~ 가입인사 써봅니다. 검색하다가 처음 와봤어요 대성마이맥 한국사 강사...
-
수많은 사람과의 관계를 만들구싳다
-
어느새 4
오르비가 내 집마냥 안락하게 돼버렸네 옯창이되.
-
여기만 입결 툭 튀어나와 있네요
-
동국대 홍대 0
언매 75 미적 80 영어 3 한국사 3 생1 47 지1 38 동국대나 홍대...
-
출근 5일하고 일병을 다는 군인이 있다?
-
이거 따려면 기간 얼마나 걸려요??
-
41로 내려갈 일 없을까요? 표점 증발돼서요
-
241125 오공완 11
시간 표시한 건 스카 입/퇴실시간 국어:피램오기전까지 고전시가 복습 수학:하.....
-
저 가출했었어요 3
7시에 나가서 20시에 들어왔는데 잘했죠?
-
옳게 된 남자화장실이다
-
이재명 대표, 조국 대표: 묵묵부답(다른일 때문에 바쁨)
-
아니 ..수능 처 망치고 백수처럼 살다가 오랜만에 헬스 조지거 왔는데…...
-
나가서 벌어 추찹스럽게 그지마냥 뽑아쓰지말고 씹새끼덜아
-
어느 대학까지 갈 수 있을까요?
-
잘자요 5
굿나잇
-
네임드 학원인데 가르치는 건 아니고 채점, 교재 만들기 정도에 최저 시급이에요,,...
-
TEAM 04 모여라 18
이번 수능 잘보셨으면 올해 원서까지 잘 써서 가시고 못보셨으면...내년엔 같이 꼭...
-
허허허
-
걍 낼 수시 발표 했으면
-
본인 내년 계획 2
건동 낮공도 안되면 부대 전자 쓰고 삼반수 갈기 것
-
80살에 수학 기출킬러 특강하고 강k 섭렵하고있으면 개 힙할듯 오르비 대주주고
-
그러길래 나 : 20년 전에 아빠가 피임안한 그 날 밤부터인것 같아요 라고 했다가...
-
못알아듣겠음
-
내가 찾는건 대의를 가진 인물이야
-
주변인들이 모두 감탄하던데
-
지듣노 1
이무진-에피소드
-
노래방 갈까 5
이골목미친사람이된다.
-
국어(화작) 49 수학(미적) 90 영어 4 생윤 86 사문 86 백분위...
-
기능사시험 결과도 나오니,, 예비군 봇치가 응원함뇨
-
이제 들어가려고 했는데 안 하고 있네 까비
-
금테 달았습니다 19
많은 오르비언분들 관심과 마음씨 착한분들이 올려주셨네요 ㅠㅠ 다시한번 감사드립니다
개추 눌렀다....
캬
일단 읽어보고 걔추
앞으로도 좋은 글 써볼게요 ㅎㅎ
ㄷㄷㄷ
갑종님이랑 생각이 거의 일치하는...
왜냐면 둘이 친구거등
저도 작년 9평 13번을 이렇게 푸는게 맞다고 생각했어서 근의 분리니 뭐니 말 많을때 잘 이해가 안되긴 했었어요
김현우 선생님이랑 완전히 똑같이 푸셨네요.. 칼럼 잘보고 갑니다!
15번 이거풀때 산술기하로 풀었는데 최솟값이라 풀린거겠죠
6평 말하시는거죠?
산술기하도 괜찮네요. 왜냐면 여러가지 조건이 딱 맞아 떨어져서 여기에 산술기하를 쓸 수 있습니다.
일단 x가 2보다 큰 부분을 봐야 하는데, 그게 x-2>0이어야 하는 산술기하 조건이랑 맞아떨어졌구요,
부등식에서 오른쪽 부분이 상수이기 때문에 최솟값만 보면 됩니다.
물론 좀 더 근본적으로는, 산술기하는 완전제곱식에서 나온 공식이기에 똑같다고 볼 수도 있지만
아무튼 아주 맘에드는 관점이네요!!
넹 6모 15번 x-2>0보다 큰상태여서 이거로 산술기하썼는데
해설강의같은거 보니까 다들 다르게풀어가지고 결국 똑같은이야기였네요
대범준 그래프 분리
첫 문제에서 a=±루트6 구하셨을 때 D/4 공식을 쓰셔는데, 미지수를 (x-2)로 해서 b'²-ac 로 바로 구하신건가요?
아! 근데 그렇게 해도 되는건가요? 제가 고1수학을 날림으로 배워서..
넵, 이해를 도울 수 있는 두 가지 관점을 소개해드리겠습니다
1. 평행이동.
x축과 만나지 않는 이차함수를 좌우로 평행이동해도 여전히 x축과 만나지 않는다. 따라서 해당 이차함수를 2만큼 왼쪽으로 이동시킨다면 3x제곱 +2ax+2이고, 여기에 판별식을 쓰면 된다.
2. 치환
x-2를 t라는 새로운 문자로 잡는다.
사실 1과 본질적으로 같다.
감사합니다!! 저는 x가 변수인 상황에서 판별식을 쓰는데, 2만큼 평행이동을 해도 똑같이 성립이 되는지 궁금했었는데 이해가 되네요! 정말 감사합니다 ㅎㅎ 덕분에 수준높은 풀이법 하나 배워갑니다 . 감사합니다!!
저도 굳이 근의 분리까지 안끌고가고 싶어서
저는 그냥 잘 모르겠으면 화끈하게 근의공식 때리고, 두 근이 모두 k보다 작아야한다면
D >=0인 경우, 그냥 더 큰 근이 k보다 작다! 라고 하게끔 가르쳤는데
기하학적인 풀이도 너무 좋은 듯 합니다 ㅎ
잘 보고 갑니다!
관찰중인 문자의 차수가 여러개가 아닌 이상 (예를 들면 식에 a도 있고 a제곱도 있는 경우), 위 기하적인 풀이가 근의 분리를 완전히 대체합니다
.
의견 공유 감사해요 ㅎㅎ
고정된 요소가 필요하다는 말씀 맞으실까요? 좋은 댓글 감사합니다 ㅎㅎ
오 이거 좋네요. 시간 단축 꿀일 듯.
+ 이번 6평 14번 부등식도, 부등식 여러개로 케이스 분류해서 끼워 맞추지 않고, 일차함수랑 이차함수 만나는 걸로 구할 수 있음!
정말감사합니다
오늘도 배워갑니다 감사합니다
많은 상황에서 상위 호환은 맞지만 계수의 꼴에 따라선 대체가 안 되는 경우도 있습니다!
(고정점 지나는 직선으로 해석이 안 되는 경우도 있음)
저도 위에 댓글에 달아놨는데, 그 경우에는 기하적 의미를 깔끔하게 부여할 수 없습니다
본문에도 추가해야겠네요
질질 쌌다.
미분을 활용하여 직선의 회전 이동을 관찰한다, 감사히 잘 읽었습니다!
좋은 글 감사합니다
선생님 진짜 미틴넘이시네요 미친초고수다