-수II, [미소변화율을 논함 3] • 적용 편
게시글 주소: https://app.orbi.kr/00067262933
*좋아요와 팔로우는 필자에게 큰 동기부여가 됩니다 :D
바로 문제부터 보시겠습니다, 다음 두 문항을 보고 떠오르는 풀이의 방향성을 정해봅시다!
*다 해결하셔도 좋고, 풀이 방향성만 마음속으로 정하셔도 충분합니다!
1번 문제
-東京工業大学(도쿄공업대학) 본고사 중 발췌
14. a>0, t>0에 대해 정적분 S(a,t)를 생각합니다.
(1) a를 고정했을 때, t에대한 함수 S(a,t)의 최솟값 m(a)를 구하시오. [4점]
(2) 다음 극한을 계산하시오. [2점]
2번 문제
-18.03.30 수학 가형
30. g(x)의 극댓값과 극솟값의 차이를 구하시오. [4점]
다 정하셨나요?
제가 두 문제를 처음에 보고 든 생각을 그대로 적자면
"함수가 간단하네요? 피적분함수는 그릴 수 있다면 그려보는 편이 좋겠어요. ->
1번 문제는 조건에 따라 a를 상수 취급하고 t가 움직임에 따라 관찰해보고,
2번 문제는 x와 y=f(x)를 움직이며 관찰하면 되겠군요!
두 문제의 공식 해설은 다음과 같습니다.
(ハイレベル 数学iii•C 중 발췌)
역시 계산은 조금 많지만, 흠잡을 곳 없는 자명한 풀이입니다.
그치만 저희에게는 이전에 학습한 미소변화율 개념이 있고, 이를 이용한다면 단축할 수 있겠다는 생각이 드네요.
*못 보신 분들을 위한 이전 화 링크입니다.
-수II, [미소변화율을 논함] : https://orbi.kr/00066494675
-수II, [미소변화율을 논함 2] : https://orbi.kr/00066523574
두 문제 모두 절댓값이 끼어 있는 정적분으로 정의된 함수이기에, 구간을 나누어 넓이함수를 구하고 미분하는게 출제의도일 테지만,
적분 값을 넓이로 시각화하여 관찰하면 넓이함수의 증감을 바로 알 수 있어요.
2번 문제가 1번 문제의 업그레이드 버젼이기에, 2번문제를 분석하고 1번문제의 해설은 아래 Solution에 추가했어요
|f(t)-f(x)|를 구간 [0,x] 에서 적분한 함수가 g(x)이니
조금씩 x를 키워가며 넓이함수를 관찰하겠습니다.
이 행동의 핵심은 다음과 같습니다.
[0<x<1]일 때 x가 커짐에 따라 y=f(x) 기준선은 위로 올라가며, 넓이의 왼쪽 부분 A는 빨간 형광펜만큼 계속 증가함을 알 수 있습니다.
즉 g(x)는 [0<x<1]에서 증가합니다.
X=1을 넘어서는 순간 기준선 y=f(x)의 운동방향이 아래로 바뀌고, x가 진짜 엄청 미세하게 커짐에 따라 A부분의 넓이는 파란 형광펜만큼 줄고, B 부분의 넓이는 빨간 형관펜만큼 늘어납니다. * 파란 형광펜 부분을 dA, 빨간 형광펜 부분을 dB라 하겠습니다.
기준선이 아래로 이동한다고 할 때, 사진에서 더 움직여도 감소하는 넓이 dA가 증가하는 넓이 dB보다 크기에 총 넓이함수는 (1<x<1+ε) 에서 감소합니다. *(ε는 적당히 작은 양수)
즉 g(x)는 (1<x<1+ε) 에서 감소하며, X=1에서 넓이함수의 증감이 바뀌므로 x=1에서 극대입니다.
이후 언제가 넓이함수의 증감이 다시 바뀌는 지점일까요?
dA>dB일땐 쭉 감소하다가 dA = dB를 거쳐 dA<dB이면 증가하겠군요.
즉 넓이함수의 극소는 dA = dB 일 때겠군요. +(사족)이로 대강의 g(x)의 개형도 그려낼 수 있습니다
(TMI) 실제로 그린 g(x)의 개형 (A의 자취)
dA와 dB는 x좌표 차이가 가로인 미세한 직사각형인데, 세로는 함께 같은 속도로 움직이니 같다고 하면 x좌표차이가 같은 부분이겠군요.
X절편 차가 동일함 + 함수가 x=1 선대칭임을 이용하면 극소가 x=4/3에서 생김을 알 수 있고 적분을 계산하면 답을 얻을 수 있습니다.
Solution) 02번 문제
Solution) 01번 문제
(저는 1번 문제의 함수 표현 S(a,t)가 마음에 들더군요..! 한 변수 고정하는 부분을 언급하지 않았어도 두개 이상의 변수 *특히 기하(평면벡터)등에서 스스로 한 변수를 고정하고 다른 하나를 움직여 보면 좋아요! )
긴 글 읽어주셔서 정말 감사합니다! :D
정성이 들어간 글인 만큼 여러 번 연습하면 꼭 본인의 것으로 만들 수 있을거에요
0 XDK (+28,000)
-
17,000
-
5,000
-
5,000
-
1,000
-
카나 투척 2
오늘 산 카나
-
생명? 관련된 정보랑 데이터 처리하는 거랑 두개 섞어서 내면서 숫자 써가니까...
-
2306 백96 2309 백98 2311 백96 1년 반 쉬고 2506 백92...
-
보기 다 읽고 푸나요?전 옳은것 고르는지 옳지 않은것 고르는지만 확인하고 문제...
-
(26 요청)(수능수학 강스포❗️)무조건 나올 문제❗️❗️ 8
1번에서 지수 연산 문제 4번에서 극한값과 함숫값을 찾는 문제 가 나올거에요!!!
-
정법 O X 퀴즈~ 13
21. 양당제와 일당제 모두 민주적인 정당이다. 22. 대통령은 정치적 중립의무를...
-
89 90 87 89 아오 ㅋㅋ 시즌2 난이도 왜이래 올해 수능 땐 무조건 영어 1...
-
동시에 내일봅시다
-
국어 낮3 영어 2에 수학 과탐 다 1컷이면 가능하나요?
-
깔아주려고 봤다네
-
교육청이랑 평가원 현장응시 빼고 다 더하면 72개 과연... 얼마 나올라나
-
잘 부탁드려요 이래놓고 내일도 안올리면 진짜 시키는거 다할게요,,
-
질문있어요 4
손가락걸기가 뭐에요?
-
‘내가 수험생이라면?‘이라는 생각을 가지고, 마지막까지 볼 것 같은 고전소설을...
-
2309 무서워... 심지어 한문제 더틀렸으면 4나올뻔
-
언제인가요 ㅜㅜ
-
독서에서 어휘 다틀림 ㅅㅂ
-
오르비 성적표 띄우기 55
이걸 아직도 갖고 있나??
-
D-369 공부 2
-
아무래도 N제갖다버리고 실모만 풀었으니.... 대충 세어보면 한 130개쯤되려나
-
2025학년도 늘잠이 한국사/동사/세사 모의고사 공개!! 6
안녕하세요, 오랜만에 돌아온 늘잠이입니다. 벌써 교직 2년차네요 ㅎㅎ 중학교에서...
-
인사해주세요,, 4
오늘도 수고 많으셨어요 계속 응원 할게요, 선생님,,
-
이미 현역 선에서 고능한 어휘력과 사고력을 바탕으로 다른 과목도 정복해서 성불했기...
-
생윤 파이널 0
-
뭐가 더 어렵죠
-
2028 이후 수능 탐구 과목당 문항 수 몇 개에요? 0
통사 통과로 되어버리면 과목당 최소 40개는 되어야 할 것 같은데...
-
끝나고 열리는 진흙탕 갈드컵이 제일 재밌음 특히 불국어일때가 갈드컵 ㄹㅇ...
-
웃긴데 논리적인 찍기 풀이법 실실 웃으시면서 구사하다가 갑자기 정색하면서 개념...
-
기억이 안나네
-
그아아아악 적당히 유도리있게 수료시켜주면 안되냐
-
6모 81 9모 81 만년 2등급따리인데 남은 기간 동안 뭐할까요? 목표는 턱걸이...
-
여기가 광안리랑 2km거리라.. 결과는 처참하다
-
다행히 탈릅해서 차단목록을 늘릴 필요는 없겠군
-
짐 싸러 나가더라 내가 옆옆자리여서 대충 본 쪽지 내용을 말하자면 “그쪽 지나갈...
-
5분 종치면 머리가 돌아가질 않음.. 지구같이 타임어택 덜하면 괜찮은데 물리는 ㄹㅇ...
-
롤스, 노직 : 정의의원칙은 개인을 목적격존재로 대우할것을 요구한다 노자 :...
-
시험 1차 붙었지만 가서 말뚝박을 자신 없어서 면접 안갔는데 수능 얼마 안남으니까...
-
1년 동안 풀었던 n제 오답들 싹 하고있는데 잘 풀림 1년 동안 그래도 헛공부하진...
-
윤성훈 교재를 2
메가패스 끊었는데 윤성훈 불후의명강 교재 지금 사면 겨울방학 쯤에 교재...
-
평가원 심리 예측성공!!
-
지금 프사 카뮈인데 뭔가 너무 딱딱하고 고지식해보이지 않음? 귀여운걸로 바꾸고싶다
-
수능 필수템 0
귀마개 <<< 특히 국어시간에 필요
-
초반에는 열심히 하면된다 이러더니 모고 성적들 보시면서 이젠 말씀들이 없으심 시발...
-
사만다 2
저만 도표 어려운거 아니죠…? 시즌1부터 쭉 푸는데 인구 도표 계속 틀려서 47의...
-
뇌 갈린다
-
스카에 몇명보임 ㅋㅋ
-
어렵다!!보다 좆같다!!인듯 3점문항이 죄다 4규 시즌1정도 난이도임 ㅅㅂ... 시간안에 풀수가없네
-
이젠 내 맘을 얼게 하네
드디어 적용탄이 나왔군요 가장 기대하고있었습니다 진짜 이칼럼은 제 수학의 시각을 넓혀줬으니 잘보겠습니다
저야말로 영광이네요! 궁금하신 점 있으시면 편하게 물어봐주세요 :)
선댓후감
미소변화율 항상 재밌게 보고 있습니다
감사드려요 선생님 :)
이거보고 주머니에서 공이나 뽑기로했다
왜 평면으로 수선을 안내리고 그런걸
동경일공의 공 아닌가용
역시 수학고수
사설 실모나 엔제에서 많이 써먹었는데 많은 분들이 얻어가셨으면 좋겠네요~^^
Sec(x)
짖짜 뇌를 꺼내서 저한테 이식하고싶어요
대 약 연
약선생님 좋은 글 감사합니당
저야말로 도움이 되었다면 기쁘네요
우와!
대 대 대
한의대 걸어두시나요
약연님 시.반(국가권력엔수생어쩌고)님이 이거좀 물어봐달랍니다
강의는 마지막에 나온다고 전해달라네요
https://youtu.be/9EOzb5wCSN4?si=3B1ZDrTpoDF_flU-
g'(x)를 수식으로 표현할 때, 미소변화량을 세로가 적당히 작은 직사각형으로 근사하였다고 생각하면 가로 × 세로인데, 도함수의 정의가 접선의 기울기이고, 접선의 기울기를 삼각비로 표현하면 아래 그림처럼 델타h/델타x로 표현할 수 있고, 델타S = 길이 × 델타높이 인데 양변을 델타x로 나눠 표현하면
넓이의 미소변화량 = 가로길이 × 도함수가 되는군요!
단! 이 경우는 기준선의 운동방향이 축과 평행하게 고정되어 있어 미세한 직사각형으로 근사, 위와 같이 도함수를 직관적으로 뽑아낼 수 있는것이지, 미소변화율 칼럼 1편의 극좌표에서의 근사에선 사용하기 곤란하군요..
헉 이걸 이제보다니..
미소변화율 3도 잘 보고 갑니다..ㅎㅎ
저야말로 도움이 되었다면 기뻐요
영광이에요
미소변화율에서 도함수값을 구할 때 이렇게 변수가 상수라서 일직선으로 움직이는 경우에는 길이가 넓이변화율 즉 도함수값임을 알겠는데 위 가형30번이나 저번 칼럼 ebs문제처럼 변수가 기울기라던지 직선이 아닐 때에는 길이=변화율(도함수값)이 성립하는지 아니면 어느정도 바례하지만 정확히 일치하진 않는 건지 궁금하네요
지난 칼럼의 경우 아래 이미지처럼 기울기를 조금씩 키우며 미소변화량을 닮음 삼각형(혹은 부채꼴)로 "근사"하였기에, 도함수값을 정확히 추출할 수는 없지만, 증감 변화의 경계가 되는 극값을 찾기는 가능한 것이에요.
다만, 위 사관학교 문항 혹은 이번 칼럼의 문항처럼 미소변화량이 축과 평행/수직한 경우에 한해서 극값조사와 더불어 도함수값을 길이로 추출할 수 있는것입니다.
:)
궁금증이 해결되셨기를 바라며, 혹시 더 궁금하신 점 있으시면 편하게 물어봐주세요