당신은 주인공입니까?
게시글 주소: https://app.orbi.kr/00064466806
ㄱㄴㄷ 모두 f(x)에 관해 묻고 있기 때문에 f(x)의 정보를 파악하면 쉽게 해결할 수 있을 것임을 예상할 수 있습니다. g(x)가 다항함수이기 때문에 갖고 놀기 좋다는 점과 다음의 관계식으로부터
다음으로의 식 작성을 이어가시면 좋겠습니다.
그리고 이와 비슷한 느낌의 상황을 가져와보면...
2024학년도 6월 미적 28번입니다. (가) 조건의 우변에 위치한 수식을 적당히 g(0)=g(2)를 만족하는 실수 전체의 집합에서 미분 가능한 함수 g(x)라고 해봅시다.
f(x)가 실수 전체의 집합에서 연속이라는 조건을 주었고 (나)에서도 f에 대한 이야기를 하고 있으므로 f(x)=_____ 꼴로 식을 작성해 정보를 정리할 수 있으면 문제 상황을 쉽게 해결해볼 수 있을 것이라는 기대! 해보시면 좋겠습니다.
2022학년도 수능 12번입니다. f(x)가 실수 전체의 집합에서 연속이고 f(x)의 최댓값, 최솟값을 알려주었고 f(x)의 함숫값들을 묻고 있으니 마찬가지로 f(x)=_____ 꼴로, f(x)를 주인공으로 상황을 정리해보는 것이 문제 풀이에 도움이 될 수 있다는 생각이 들면 좋습니다.
이제 그래프 그리고 최대, 최소가 존재한다는 점과 그 값이 각각 1, 0임을 이용하시면 실수 전체의 집합에서의 f(x) 정보를 확정지으실 수 있습니다!
합성함수의 그래프로서 해석하려고 하면 머리가 깨져버릴 것 같으니 일단 식을 정리해봅시다!
f는 상수항 말고 다 결정되어있으므로 f'는 결정되어 있습니다. 역함수가 정의되려면 정의역 내에서 원래 함수가 일대일 대응을 만족해야합니다. 연속 함수에 대해 일대일 대응을 만족한다는 말은 주어진 함수가 일대일 함수라는 의미, 다시 말해 증가함수 혹은 감소함수라는 뜻입니다. 자세한 내용은 수학(하)와 수학(하)의 확장판이기 때문에 저도 잘 기억이 나지 않아... (물론 이 정도만 다루어도 수능 수학 수준에서 충분한 설명이 된다고 생각합니다)
따라서 g(x)라는 f(x)의 역함수를 괜히 주지 않았을 것입니다, 수능 수학도 누군가에 의해 인위적으로 만들어진 문항이기 때문입니다. 출제 의도만 의심하는 것은 수학 실력 향상에 별 도움이 되지 않지만 충분한 훈련과 연습을 거치며 적당히 출제자가 무슨 생각을 하며 문항을 만들었을지 생각해보는 것은 풀이 방향 설정에 큰 도움이 될 수 있다고 느꼈습니다. 그래서 직접 문항을 만들어보고 평가해보는 것이 수학 실력 향상에 큰 도움이 된다고 생각합니다.
방정식 g(x)=2x or g(x)=-2x+2의 구간 [0, 1]에서의 실근 존재 여부를 조사해야하기 때문에 함수 y=g(x), y=2x, y=-2x+2의 그래프를 그려두고 교점 조사를 해보면 되겠습니다. f(x)가 최고차항 계수가 양수이고 최고차항 차수가 홀수인 다항함수이기 때문에 일대일 함수가 되려면 증가함수일 수밖에 없습니다. 따라서 g(x)도 증가함수입니다. (이 과정도 논리적으로 보여보시기 바랍니다, 증가의 정의와 역함수의 정의를 이용하시면 보이실 수 있습니다!)
y=2x, y=-2x+2의 그래프는 그릴 수 있기 때문에 y=g(x)라는 증가함수의 그래프가 어떻게 생겼을지가 문제의 핵심이 되겠습니다. 다시 말해 g(x)에 관해 식을 정리하고 나서 g(x)가 주인공임을 확실하게 확인할 수 있는 문항이었습니다.
2023학년도 수능 22번입니다. (가) 조건을 점 (1, f(1))과 점 (x, f(x)) 사이의 평균변화율로 해석하여 평균값 정리를 적용해 바라보는 관점도 좋지만... g(x)가 실수 전체의 집합에서 연속이라고 했고 (나)에서 g의 최솟값을 알려줬고 (다)에도 g(1)이 들어가있으니 'g(x)가 주인공인가?' 하는 생각을 해볼 수 있습니다.
또한 저처럼 수학적 머리가 좋지 않은 학생 분들께는 오히려 수식으로 밀어붙이는 것이 직관적인 풀이일 수 있다는 생각을 해왔습니다. 따라서 이러한 맥락에서 풀이를 이어가보자면 다음과 같습니다.
수식이 조금 복잡하긴 하고 f(x)에도 미지수가 2개 들어가있기 때문에 계산이 조금 들어오지만.. 어쨌든 2017학년도 수능 나형 30번 및 2024학년도 6월 미적 28번과 마찬가지로 어떤 함수에 관한 2차방정식을 푼 셈입니다.
g(x)의 형태를 다음과 같이 생각해주면
g(x)의 증감은 결국 h(x)라는 최고차항의 계수가 1인 이차함수의 증감을 따라갈 것임을 예상할 수 있습니다.
g(x)가 실수 전체의 집합에서 연속이려면 우선 g(x)가 실수 전체의 집합에서 정의되어야 하기 때문에 루트 안은 음수가 될 수 없습니다 따라서 h(x)가 지니는 함숫값들은 실수 전체의 집합에서 0 이상이어야합니다. 따라서 이차함수 h(x)는 실근을 갖지 않거나 중근을 가질 것입니다.
만약 h(x)가 실근을 갖지 않는다면 (나) 조건에서 g(x)의 최솟값 존재성, 다시 말해 h(x)의 최솟값 존재성을 만족시키기 위해 g(x)를 다음과 같이 확정지을 수 있습니다.
이제 그 최솟값이 5/2임과 f(g(1))=6을 이용하시면 a, b값을 결정하실 수 있고 그에 따라 f(x)도 결정하실 수 있으십니다.
만약 h(x)가 중근을 갖는다면 h(x)의 판별식이 0이어야 하는데.. 조사해보시면 a값에 무관하게 D<0이기 때문에 h(x)는 실근을 갖지 않음을 확인하실 수 있습니다. 따라서 위에서 확인한 상황이 정답이 되겠습니다.
이렇듯 살펴본 문항들에서 '어떤 함수가 주인공이다'라는 생각이 들었을 때 그 함수에 대해 정보들을 정리해보면 문제 상황을 쉽게 혹은 확실하게 해결할 수 있었습니다. 수능은 100분 내에 만들어낼 수 있는 최고의 점수를 만드는 시험이기 때문에 '아름다운' 풀이나 '쉬운' 풀이도 좋지만 '확실하게' 문항을 해결할 수 있는 풀이를 확보해두는 것이 정말 중요하다고 생각합니다.
그래서 2023학년도 수능 22번과 같은 문제도 비록 평균변화율로 정의된 함수를 평균값 정리를 활용하여 핵심을 정리하는 풀이가 정석으로 퍼져있는 듯하지만... 이와 같이 직접 g(x) 수식을 작성하는 쪽의 풀이도 분명 의미를 지닌다고 생각하고 있습니다. 특히 바로 다음해 6월 모의고사에 같은 사고과정이 출제된 것을 볼 때요! (위에 있는 2024학년도 6월 미적 28번)
당신은 주인공인가요? 당신은 당신이 주인공이라고 생각하시나요? 이러한 추상적인, 실체를 만져볼 수 없는 질문들은 사람마다 그리고 각자가 처한 상황에 따라 다른 답을 내놓을 수 있다고 생각합니다.
저는 시간이 얼마 남지 않았으니 열심히 해라, 그동안 잘 해왔으니 좋은 결과가 있을 것이다... 와 같은 형식적인 말을 하길 별로 좋아하지 않는 편입니다. 대신 확실한, 객관적인 사실만을 혹은 그것처럼 보이는 말들을 남기는 것을 좋아합니다.
확률과 통계 선택자 분들은 아시겠지만 우리가 말하는 수학적 확률과 경우의 수는 다릅니다. 수학적 확률은 말 그대로 '이 사건이 수학적으로 얼마 만큼의 확률을 지니고 발생할 수 있는가?'에 대한 정보를 주지만 경우의 수는 그러한 경우의 수가 '존재한다'라는 그 존재성 자체를 보여줍니다.
내가 지금 이 순간의 주인공이라고 믿든, 믿지 않든 그것은 여러분의 선택입니다. 하지만 저는 적어도 스스로에게 주어진 삶 속 주인공이 나 자신이라고 생각한다면 확률보다 경우의 수를 믿으라는 말씀을 드리고 싶습니다.
남은 기간 동안 여러분이 죽어라 공부해서 목표 대학, 학과에 합격할 확률을 고려하는 것도 필요하겠지만 합격한다는 그 경우의 수가 존재함에 더 초점을 두셨으면 좋겠습니다. 과거에 나와 6모, 9모 성적이 비슷했던 학생이 어느 대학에 갔는지, 나와 비슷한 학습 방법을 택했던 이가 어떤 결과를 맞이했는지, 통계적으로 볼 때 내가 어느 대학, 학과에 다니게 될 확률이 큰지를 생각하는 것도 필요할 때가 있겠지만... 내가 진심으로 가고싶은 대학, 학과에 내가 합격하여 다니는 그 경우의 수에 초점을 둔 상태에서 남은 시간을 보내가셨으면 좋겠다는 뜻입니다.
단 하나의 경우의 수, 그것이 당신의 미래로 확정될 순간을 기다리고 있겠습니다. 얼굴 한 번 뵙지 못한 분들이지만 2022학년도 수능을 준비했던 한 수험생으로서 진심으로 응원하고 있겠습니다.
모두 남은 오늘 하루도 힘내세요! 글 읽어주셔서 감사드립니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
전보다 나아진 편이구나
-
드디어 저도 여자친구가 생겼네요 내일 결혼식 올립니다 축의금은 덕코로 받을게요
-
이걸어케사달라고함 양심이있으면 바로 과외뛰어야될 가격인데 ㅅㅂㅋㅋㅋ
-
"중국 정부에 개인정보 유출 가능성"…전세계서 '딥시크' 경계 2
전 세계에서 중국 인공지능(AI) 스타트업 딥시크(DeepSeek)가 개발한 AI...
-
난 마린쟝하고 연애하는 중임
-
하....못참겠네
-
생각할수록 인생이 묘하게 비슷한거같음 (물론 전 엄마가 없진 않습니다)
-
표지보니까 공부할 맛 나네
-
고민 2
약사의 혼잣말을 볼까 무직전생을 볼까
-
무대 1
뜨뜻한 즐거움의 무대에서 사고 팔리는 것은 영혼들 하나하나 밝-은 뿌듯함의 무대에서...
-
안녕하세요? 2
안녕하세요?
-
20초반이면 보통 취직도 안할 나인데 돈을 어케 모음 물려받아야 가능하다아니냐
-
같은 집 같은 방에서 같이 자고 깨며
-
고전시가, 단어뜻, 개념강좌 문학 독서, 마음가짐? 일케 한 5개정도 강좌가...
-
일단 시켜놨기는 한데
-
닭이 온기를 얻고 깨어나면 어떡함? 목이 없지만 강한 열로 인해 완벽한 지혈이...
-
우예기다리농..
-
메디컬 싫어하는 서울대 일반과인 것 같음
-
옯평 너무 높네 0
-
쮀 드가자~ 0
앙스앙스!
-
부모님 노후 준비 안되어있고 빚 있음(1개) 인데 C주는거보ㅕ면 걍 개후한듯 대출은...
-
나름 성대반수생인데 크흠...
-
육각덕 테스트 10
-
상관없다네..? 나중에 해봐야지
-
아이패드 에어 불편함? 11
친구가 좀 렉 걸리는 느낌이라는데 ㅇㄱㅈㅉㅇㅇ? 에어13고민중이였는데
-
오늘의 초딩겜 0
전기를 쓰기 시작
-
학생이라 직업이 나락이군요 학력은 약대지만 설카포로 뻥친건 비밀。
-
보고 싶던 애니메이션 DVD나 블루레이를 시간 때우기용으로 볼 수 있다는 게...
-
안되겠다 치킨집 연다 35
상호명은 오르비치킨으로 오르비 본사 맞은편 건물 1층에 여는데 알바는 고닉 몇 명...
-
그냥 버스기사가 승객들 대가리 다 후려친다음에 강제로 버스로 끌고가서 운전함
-
확통사탐 12111뜨면 22
어디가나요 설대 ㄱㄴ? 설대 젤 낮과가 컷이 어느정도임
-
[고려대학교 25학번 합격] 합격자를 위한 고려대 25 단톡방을 소개합니다. 0
고려대 25학번 합격자를 위한 고려대 클루x노크 오픈채팅방을 소개합니다. 24학번...
-
육각덕 테스트 ㅇㅈ 20
-
본인은 군수중인 수포자 확통임 3년전에 고3일때 수학학원 다니다가 던지긴 했는데...
-
세종대 합격생을 위한 노크선배 꿀팁 [세종대 25][맛집] 0
대학커뮤니티 노크에서 선발한 세종대 선배가 오르비에 있는 예비 세종대생, 세종대...
-
연대 상경계열 따로 뽑는거 교수님의 깊은 뜻이 느껴진다 5
경제+통계 복전 대학원을 위한 황금 조합 왜 아는지는 묻지 마세요
-
키가 2cm라서 7
165cm 이하 넣긴 햇는데 이게 맞냐..?
-
알바야 치킨튀겨라
-
“벌통에 여왕벌이 없잖아!”…양봉업자 살해한 70대 검거 2
여왕벌이 없는 벌통을 판매했다는 이유로 양봉업자를 살해하고 유기한 70대가 경찰에...
-
창업비용이랑 치킨집운영이 조스로보이냐
-
231122 수식풀이 16
의외로 그래프논리보다 수식논리가 훨씬 간?결한 문제 시험지 위에 굳이 안적어도 되는...
-
엄마와 아빠의 대학에 나는 약대생으로 들어갈래요 다 뒤졌어요 내년 설날 부모님...
-
궁금해용
-
먼가 취미가 있는게 좋을거같은데 일단 헬스하느라 다른건 생각을 못해봤음..
-
눈 따위 맞으면서 가기
-
아. 5
시발…
-
저도 현생이 있고 현업이 있으니 계속해서 모니터링 하면서 대응하기 어려운게...
-
지금도 그렇지만 앞으로 공돌이는 ai딸깍으로 대체되고 치킨집 차리고 문돌이는 관리직한다는거임
응원 감사합니다
후회없는 시간 보내 만족스러운 결과 얻어내시길 바랍니다
꽤나 신선한 해석이네요
잘 읽고 갑니다.
감사합니다! 발견한 이후로 설명하곤 하는 내용입니다
난 주인공이야
선생님 좋은 설명 감사합니다
f(x)에 대한 정보를 물을 때 f(x) 식을 작성해보자는.. 당연하지만 한 번쯤 명시적으로 꺼내어 생각해보면 좋은 주제라고 생각하고 있습니다. 학습에 도움이 되셨길 바랍니다!