미적분 배우신 분 아무나 제발 들어와주세요....
게시글 주소: https://app.orbi.kr/00062156669
이제 막 미적분 배우고 있는 고등학생인데요.... 급수 파트에서
항의 부호가 교대로 변하는 급수는 짝수항까지의 부분합이랑 홀수항까지의 부분합이 같으면 그 값으로 수렴하고 같지 않으면 발산한다고 배우잖아여...?
이렇게요!!!
근데
문제로 이게 나왔는데요... 짝수항까지의 부분합이랑 홀수할까지의 부분합이 다르니까 발산한다고 해설되어 있는데
사진에서 빨간색으로 표시한 제 풀이처럼 그냥 부분합 Sn의 극한 구하는 방식으로 구하면 부분합의 극한이 -1/2가 나와서 수렴한다고 나와요... 어디서 잘못된 걸까요 제발 알려주세요ㅠㅠㅠㅠㅠ
항의 부호가 교대로 변하는 모든 급수는 그냥 부분합의 극한을 구하는 방식으로 급수의 수렴/발산 판단을 하면 안되나요..? 그건 아닐테고ㅠㅠ 이 부분때문에 고전중입니다...
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
"나도 학번제 별로 안좋아하는데....." "어쩔 수가 없어!어떡하냐...
님이 계산하신건 짝수개일 때입니다. 세어보세요 ㅋㅋ 개념은 틀리지 않았습니다!
ㅠㅠ 그러면 저런식으로 부호가 교대로 바뀌면서 소거되는 모든 수열의 급수는 짝수항/홀수항 부분합으로 계산해야 하나요? 분수식의 급수계산에서는 그냥 부분합의 극한으로 구했는데... 어렵네요ㅠ
사실 저렇게 하는 것보다 살짝 잡기술로 짝수항 부분합만 계산한 뒤에, (님이 하신 것처럼)
홀수항들이 (합 말고) 0으로 수렴하는지 확인해보세요. 0으로 가면 자연스레 짝수항 부분합과 홀수항 부분합 수렴값이 같아지게 되고요, 저 문제와 같이 0이 아닌 수 (1)로 가면 달라져서 수렴 안하죠.
음.. 그러면 부호가 교대로 바뀌는 급수들은 그냥 부분합의 극한만으로는 수렴/발산 판별이 안되고 짝수항 홀수항 부분합으로 판단해야 하는데 말씀해주신 기술 등을 써서도 판별할 수 있다는 게 맞나요?
맞습니다. 잘 이해하셨네요! 부호가 바뀌면 짝수항 홀수항 부분합을 따로 구해야됩니다. 다만 제가 알려드린 기술?을 쓰면 더 편해진다는 거죠!
감사합니다!!!!!! 몇시간째 이것땜에 혼자 헤매고 있었는데 큰 도움 주셨어요ㅠㅠ 정말 감사합니다!!