[서울대 수교과] 해설지 없이는 못 푸는 그대에게, 수I 삼각형
게시글 주소: https://app.orbi.kr/00062038781
(비슷한 얘기 예전에 인강으로 찍은 링크 https://youtu.be/19hpuY3U9cI)
오르비선생님들 반갑습니당~ 저는 서울대 수교과 다니는 신동성 이라고 함니다. 수학보다 롤을 더 잘하긴 하는데, 수학도 좀 칩니다
그 수학 1에서 삼각함수의 활용으로 sin법칙, cos법칙 나오잖아여? 그냥 무지성으로 들이박아서 가끔 풀려도 내가 뭘 한건지도 모르겠고, 안풀리면 우주끝까지 안풀리죠? 해설지 없이는 도저히 못 풀겠고, 해설지 보면 이해는 되는데, 다음에 비슷한 거 만나면 혼자서는 또 못 풉니다.
아마 개념 막 마치고 기출 돌입하신 분들이 제일 많이 겪는 어려움일거에요. 삼각형 뿐 아니라 수많은 단원에서 그럴겁니다. 괜찮습니다. 예전에는 저도 그랬거든요. 그러니까 이 글을 클릭하신 여러분은 운이 아주 좋습니당ㅋㅋ
답지를 보고 계산과정을 이해하는 건 누구나 할 수 있어요. 중요한 건, 왜 지금 이 보조선을 긋는지, 왜 지금 코싸인법칙을 사용해야 하는지 등, “그 행동을 하는 이유” 를 아는 것입니당. 그래야 다음에 비슷한 환경에서 "아, 이러이러하니까 코싸인법칙을 써야겠다!" 하고 혼자서도 풀 수 있거든요. 그렇게 머리를 굴리면서 풀면 똥구멍으로 소주 세 병 마시고 풀어도 다 풀립니당~
기출문제 세 개와 함께 구체적으로 이야기해보겠습니다!
2022학년도 6월 모의고사 12번 입니다. 쭉 읽어보시고, 풀어보신 후에 따라오십쇼!
우선 삼각형 ABC에서
이렇게 변-변-각을 알려줬어요. 그러면 바로 cos법칙을 떠올리셔야 합니당. 나머지 한 변도 구할 수 있겠네요.
또, 그렇게 세 변의 길이를 알면 cos법칙으로 삼각형 ABC의 모든 각도 구할 수 있고,
그러면 삼각형 ABC의 모든 정보를 구할 수 있겠네요.
비슷하게, 삼각형 ABD도 이등변삼각형이므로 변-변-각을 알고, 그러니까 cos법칙으로 나머지 한 변을, 나아가서 모든 정보를 알 수 있을 겁니다.
그 상태에서, 마지막에 구해야 하는 변 DE를 봅시다.
1. 변 DE는 삼각형 BED에 속해요.
2. 삼각형 DBE에서 변 BD, 각BED를 압니다.
3. 변과 각이 마주보고 있어요.
4. 그러면 sin 법칙을 사용할 가능성이 높습니다.
5. 그러면 변 DE와 마주보는 각 DBE만 알면 sin법칙을 이용해서 변 DE를 구할 수 있습니다.
변 DE를 구하는 문제가 각 DBE를 구하는 문제로 바뀌었네요.
계속해서,
1. 각 DBE는 삼각형 DBC에 속해요.
2. 삼각형 DBC에서 변 BD, 변 BC, 각 BDC를 압니다.
3. 그러면 cos법칙을 사용할 가능성이 높습니다. 변 CD의 길이를 알 수 있겠네요.
4. 그러면 변-변-변이므로 또 cos법칙으로 각 DBE를 구할 수 있겠네요.
그러면 끝났습니다. 변 CD -> 각 DBE -> 변 DE 순서로 계산하면 돼요.
정답을 구했습니다. 앞서 말했듯, 계산은 누구나 이해할 수 있습니다. 변-변-각이므로 cos법칙, 변과 각이 마주보므로 sin법칙 등, 그 행동을 하는 이유를 아는 게, 앞서 12345번으로 보여드렸던 생각하는 방법을 아는 게, "~를 구하는 문제로 바뀌었네요." 라고 하면서 구하는 대상이 무엇인지 인식하고 Refresh하는 게 정답 숫자 따위를 구하는 것보다 훨씬 더 중요합니다. (사실 정답 맞나 확인도 안했음ㅋㅋ)
* 변-변-각 상황에서의 cos법칙에 대해 코멘트를 조금만 하자면, 초등학교때 삼각형의 합동조건이라고 배우죠? 그중에 "두 변과 끼인 각" 이 있었어요. 두 변과 끼인 각을 알면 합동인 삼각형을 그릴 수 있다는 거였죠. 그 말인 즉, 두 변과 끼인 각을 알면 나머지 모든 변과 각도 알 수 있다는 말일 겁니다. 그걸 가능하게 해주는 게 바로 cos법칙이에요. (꼭 끼인 각 아니어도 변-변-각 알면 cos법칙으로 나머지 한 변 구할 수 있겠죠?)
비슷하게, 변-변-변 합동은 cos법칙, 변-각-각 합동은 sin법칙과 긴밀한 연관이 있습니다.
다음 문제입니다! 원래 세 개 하려고 했는데 코로롱 걸려서 아프고 귀찮으니까 두 개만 할게염
2023학년도 수능 11번 문제입니당! 역시나 쭉 읽어본 후 한 번 풀어오시고 따라와주세요! 라고 말해도 아무도 안그러겠지? 그치만 ㄹㅇ 혼자 먼저 해봐야 공부가 훨씬 더 됩니당. 제발해보십쇼
우선 외접원에 접하는 삼각형이 두 개나 있고, 게다가 외접원의 반지름을 구하라고 했으니 무조건 sin법칙입니다. sin법칙 안 쓸 거면 외접원도 안 주고, 외접원의 반지름을 구하라고도 안 했을 겁니다.
그러면 마주보는 변과 각을 아무거나 구하면 sin법칙을 이용해서 외접원의 반지름을 구할 수 있겠네요.
외접원의 반지름을 구하는 문제가 마주보는 변과 각을 구하는 문제로 바뀌었습니다.
점 찍힌 각을 라고 할게요. 를 강조하고 있으니, 마주보는 변과 각 중 각은일 가능성이 높습니다.
한편, 삼각형 ABC도 변변각, 삼각형 ACD도 변변각을 아네요. cos법칙으로 BC, CD를 구할 수 있겠습니다.
원주각의 크기가 같으므로 두 변의 길이도 같네요. K라고 할게요.
심지어 K와가 마주보고 있죠? K와 구하면 바로 sin법칙을 이용해서 외접원의 반지름을 구할 수 있겠네요.
마주보는 변과 각중 구체적으로, K와 구하는 문제로 바뀌었습니다.
그러면 K와 를 어떻게 구할까요? 식을 다루는 감각이 풍부하신 분들이라면 바로 감이 오겠지만, 그렇지 않더라도 할 수 있는 걸 해보면 바로 보일겁니다. 근데 지금 할 수 있는 게 cos법칙밖에 없죠?
연립하면를 구할 수 있겠고, 그러면 K도 구할 수 있겠네요.
마주보는 변과 각, 즉 K와를 구했으므로, sin법칙을 이용하여 처음에 구하라고 했던 외접원의 반지름을 구할 수 있겠네요.
정답을 구했습니다. 마찬가지로. 계산은 누구나 이해할 수 있습니다. 변-변-각이므로 cos법칙, 삼각형의 외접원이 나왔으므로 sin법칙, 삼각형의 외접원의 반지름을 구해야 하므로 sin법칙등, 그 행동을 하는 이유를 아는 게, 생각하는 방법을 아는 게, "~를 구하는 문제로 바뀌었네요." 라고 하면서 구하는 대상이 무엇인지 인식하고 Refresh하는 게 정답 숫자 따위를 구하는 것보다 훨씬 더 중요합니다. (여기도 정답 맞나 확인도 안했음ㅋㅋ)
이상입니다! 해설지 없이는 도저히 못 풀겠고, 해설지 보면 이해는 되는데, 다음에 비슷한 거 만나면 혼자서는 또 못 푸는 거, 그게 저도 정말 힘들었는데 끊임없이 생각하면서 풀면 이겨낼 수 있습니다. 비슷한 여러움 겪고 계실 많은 수험생분들께 도움이 되면 좋겠네요.
으으 코로롱 잘 피해다니다가 3년만에 걸렸는데 아프네용,, 다들 건강하시구요
도움이 되었다면, 도움 안 됐어도 고생한 동성이를 위해 추천 하나씩 살포시 눌러주십쇼!
수험생활 화이팅들 하시구염 다음에 심심하면 다시 놀러오겠슴니다 ㅂㅂㅂ~
(02/14 21:28수정: 추천글 고맙습니다 선생님들 역시 슈퍼스타의 기질은 숨길 수가 없네요)
0 XDK (+1,000)
-
1,000
-
[민족고대]25학번 아기호랑이들 고파스 단톡!(19, 20, 21, 22, 23, 24 종합 최다인원!) 0
안녕하세요, 고려대학교 재학생 대표 커뮤니티고파스의 새내기 맞이단입니다!!...
-
가나다군 만든새끼 어디살아? 경북대는 지잡이면 시발 다군으로 짜질것이지 근데 시발...
-
생2 독학 5
화1지1러였는데 화1 진짜 표점, 표본 등의 이유로 유기하고 생1이나 생2 하려고...
-
정시만 붙어봐서 ㄹㅇ 모름
-
해보고 싶은데.... 어디다 공고를 올려야 하는지 잘 모르겠어요 아는 분 계실까요?
-
국어 노베인 예비 고3 입니다. 모의고사 성적은 5등급 입니다. 겨울방학에 인강...
-
어제는 19명 지원했는데 오늘은 163명 지원함 이거 다 허수 유입인가요?
-
69수능 시험 나올때마다 매번 수학 풀어보는것도 취미라 할 수 있나...? 확통은...
-
재수하면서 느낀 거임
-
논술로 둘 다 합격하기는 했으나 연대는 한가지 걸리는 점이 있습니다. 2년 연속...
-
ㅇㅇ
-
세로일때랑가로일때랑다르니까너무어색함...
-
사장님 아이고 2
왜 이렇게 월급 많이 줬어요
-
횡단보도에서 막 핸드폰 보다가 막 계속 별것도아닌걸로...
-
아직 부족해...
-
제가 재수생이 될 것 같아서요... 시대 재종 생각하고 있는데 여쭤보고 싶어서요...
-
,,,
-
한 된찌가 먹고싶은데 요새 잘하는 집이 없네요..
-
단국대 인천대 에리카 랑 비교했을때 높은 순서대로 나열하면 어떻게 됨?
-
ㅈㄱㄴ
-
ㅛㅣ간개빠르네
-
국수탐은 백분위, 영어는 원점수임뇨이 고1 국수영 6월 2 1 1 (95 97...
-
ㄹㅇㅋㅋ
-
혹시 될까 싶어서 들어온 슈냥이면 7ㅐ추
-
친구있으몀 불편하게됨 하 사회성다죽은듯.. 원래 친하던 애들이랑은 ㄱㅊ은디 새 친구...
-
인가경 안정 국숭세단 적정 나왔고 건동홍 낮은 과 쓰고싶은데 컨설팅 오바인가여 넘...
-
나 어제 성적표 입력 다 하고 신청 다 한거 확인햇는데 지금 들어가니까 마이페이지에...
-
아무리 생각해도 제주의 카관의 붙을 것 같은데
-
지금 13명잇듬 옾챗에 쳐서 들어와주셈 ㄱㄱ 피해서 써요
-
서강 전자공 2
논술 붙으신분? 다맞으셨나요..?
-
제발 하
-
님들이라면 연고대 문과 21
상경빼고 다 가능할 때 어디 학과 가고 싶으신가요? 간단한 이유도 !!!!!!!!!
-
음..
-
님들 진학사 3
정상화 된거임? 아님 후함 아님 짬
-
앞표본아 빠져라
-
95 99 2 97 100 지역인재로 경상국립대 의대 가능??
-
수능 용도는 아니고 한예종 넣을 때 기하+공통 친대서... 괜찮음?
-
연애얘기는 하지맙시다. 10
가뜩이나대학도못가서심란한데 이런걸로까지기만하면 버티기가힘듭니다
-
여긴 다신 안 시키겠다 요새 물가 진짜 올랐구나....지금이라도 달러로 다 바꿔놔야되나
-
계엄때 우리는 7
전방 모사단에서 전차대대 출동, 서울 진입중이다 수방사에서 병력 증파해서...
-
아 살맛 안나 ㅎㅎ...
-
부산대 합격 2
경북대도 예비1이라 사실상 합격될거같긴한데 홍대 떨어지면 부대 가야겠다.
-
N수생연애하는법 1
조정식 현강을 등록한다 조정식이 한창 열강의중일때 일어나서 한마디 하겠다고 한다....
-
저도 선넘질받습니다 19
뇌의 필터를 평소보다 조금만 거쳐서 마구마구 투척해주세요
-
밑에 글만 봐도 0
문학조언은 ㄹㅇ no재능러에게만 듣는게 맞다
-
어디갈까요 ㅠㅠ 복전 생각하면 성대는 이과대가 수원에 있어서 불편할 것 같기도 해서...
-
오르비 기괴한점 1
성뱃 냥뱃 중뱃 이런거 단사람들이 공부질문 하고있음
-
얼버기 6
이제 공부해야지
롤티어가어디세요
탑레 다2임니다 다1뚫기빡세네용,,
요새는 잘 안하긴 합니다ㅋㅋㅋ
신돌석 폼 미쳤다
ㅋㅋㅋ귀여운별명고맙습니다선생님
1번 문제는 삼각형 BDC 이등변이니까 D에서 BC로 수선의 발 내려서 관찰하는게 더 쉽지 않나요?
좋은 의견 감사합니다 선생님! 그 또한 아주 훌륭한 풀이이죠.
교육이 늘 그러하듯 어떠한 내용을 핵심적으로 다룰 것인지에 따라 적정한 수준에서의 맺고 끊음이 있어야 한다고 생각하는데요, 이 게시글에서 저는 1번 문제라는 하나의 사례에 대한 해결법 보다는, 보다 일반적인 여러 케이스들에도 써먹을 수 있는 “생각하는 방법”을 전달하고자 해서, 변-변-각에 cos법칙으로 대응하는 풀이를 소개하였습니다.
그 밖에도 가능한 여러 가지 풀이가 있겠지만, 선생님께서 말씀해주신 이등변 삼각형의 수선의 발을 이용한 풀이 또한 아주 훌륭한 풀이라고 생각합니다! 다시 한 번 의견 감사합니다.
직관으로 1초컷
감각적인 직관
폼 미쳤다
김현철!김현철!김현철!
저거 처음봤을때 ㅈㄴ웃겼는데ㅋㅋ
선생님 쪽지 보시나요?
반갑습니다선생님! 오르비 원래 잘 안들어오긴 하는데요, 쪽지 주시면 늦더라도 꼭 답장 드릴 수 있도록 하겠슴니당 궁금한 거 있으면 연락주십셔~~
도움 되었습니다!
대 명문 와대생선생님께 도움되었다니 관악잡대의 영광임니다 흑흑
롤 다이아 폼 미쳤다
피지컬의 하락을 운영으로 메꾸는중,, 니달리 창도 못피합니다 흑흑