명제 하나 증명해주세요. 함수의극한파트입니다.
게시글 주소: https://app.orbi.kr/0006131953
lim f(x), lim g(x)의 값이 모두 존재하지 않으면 lim (f(x)+g(x))의 값도 존재하지 않는다.
반례없이 극한의 성질로만 접근하고 싶은데요. 귀류법을 써야될것같은데.. 혼자 생각하기엔 한계에 부딪쳐서요. 세 극한모두 x->a일때입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
https://naver.me/5YFRHw2t 어디든 민주 한숟갈 올리는게 요즘 여대에서 유행인가봄
-
ㅅㅂ 4
깼다
-
속보 0
우옹애
-
기상 완료 예비군 2일차 갔다오겟음 아...
-
일단 지방의대 바이탈과 교수들은 인서울로 많이 옮기거나 그만둠 지방의대 교수들이...
-
생활패턴 망했다 1
오전 7시 취침 오후 4시 기상 이게 뭐야 대체
-
김상훈T 0
독서 독해 방식이 어떻게 되나요? 그읽그풀 느낌이면 좋겟는데..
-
잠이 안와 씨바 3
나 자고 싶다고........ ㅅㅂㅅㅂㅅㅂㅅㅂ 어젯밤도 샜는데 왜 잠이 안오는데ㅜ
-
ㄱㄱ
-
기차지나간당 2
부지런행
-
진짜 잔다.. 2
다들 자요 빨리
-
으으
-
밤샐까.. 0
수면패턴 박살났는디 초기화나 시키게
-
양악하고싶다 0
-
선착순1명 18
가장 빠른 사람이라는 뜻
-
12시 이후부터만 ㅇㅇ.. 자야지이제
-
97점 99 76점 85 93점 1 45점 96 42점 96 언미생지 나는 이과지만 수학이 밉다..
-
에구구
-
18수능 국,수(가형),영,한국사,물2,화2,중국어 응시 각 원점수...
-
ㅇㅈ 10
마스크업으면무서웅
-
언제까지 이런 현타오는 일상을 살아야하지
-
또 불면증의 밤 4
엊그제도 밤을 새고 어젯밤엔 4시간 잤는데 또 잠이 안와???? 낮잠도 안잤는데 나...
-
최대한 안정적인 과목 원하고 둘 중에 하나만 꼭 고르면 머가 좋을까여
-
안녕하세요.. 8
요즘 바빠요
-
안자는 사람 손 9
가능?
-
수시6장 설대만지름 서울대의대 수시교과 합격 서울대 경제학과 학생부교과전형 합격...
-
나랑 정철할래? 1
-
그것은 바로 경제 왜냐면 전교에서 한명만 하거든
-
이분 닮은걸류 종결..
-
오르비
-
진짜 잔다. 4
10시엔 일어나야 해..
-
이게 이론상 가능한게 무서움...
-
이거들어바 18
-
시험장에서 어떤 개지랄을 했길래 이렇게 망쳤을까..
-
눈팅하는 인해전술 인민군 수많명과 잠 못자고 깨어있는 호감고닉들의 눈치싸움
-
에휴씨부럴ㅋㅋ
-
통과 내신 1
며칠전에 시험본건데 나름 기출픽이나 오투 풀어서 통과 열심히 했는데 처음 보는...
-
출근핑
-
화학2 Kb가 1보다 클 수 있나..(23학년도 17번) 0
23학년도 17번. (나) 용액 화학2 Kb가 1보다 클 수 있나..
-
단, #~#은 1343313에게 당장 쪽지를 보내야 한다는것을 의미한다
-
왜 보고 싶어함?
-
논술 발표 1
논술 발표일 보통 몇일정도에 하나요? 성대 한양 중앙 작년에 언제쯤 했는지 궁금해요
-
와이파이 왤케 빨리 차..?
-
진짜 얼마나 감사한 일인지.. 걱정없이 새르비 쌉가능
-
오래된 생각이다...
-
음울하면서도 몽환적이었던 거 같다
-
살빼야되는데
-
지거국 낮은 과라도 상관없습니다..충남대,경북대,부산대,전남대 중 가능한 대학 있을까요..?
-
근데 반응이 당황스럽지만 감사합니다.. 예상치 못한 좋은 반응들이라
-
진짜 미리 성적표 다 뽑아놓나요?
저 명제가 거짓임을 증명하는 거죠? (당연한건가..?)
그렇다면.. 반례가 있어서 당연히 거짓인 것을 반례말고 수학적인걸로 알아낸다.. 어려울것같은뎁..
참이라고 가정했을때 대우쓰면 lim (f(x)+g(x))가 존재하면 lim f(x) 또는 lim g (x) 가 존재한다 인데 가정에있는걸 분리하려면 f (x) 랑 g (x)랑 둘다 수렴해야지 분리할수있는데 전제조건에 둘다수렴하는지 안나와있어서 거짓아닌가요? 아니면 죄송...
필요한 전제조건이 우리가 증명해야할 결과를 포함해버리니..
이건 반례로 알수밖에없는게 아닐까요..?
아~~~~ 반례로는 너무쉽게 풀리는데... 평가원이 반례를 외워서 풀라고는 안했을것같아서 질문드린거에요... 이거 평가원 출신 문제입니다. ㅜㅜ
평가원에서 제시하는 수학적 능력에는 반례를 찾는 능력도 명시되어있습니다 from 썹T
그렇다면 역시... 반례인가요.. 으악. (ㅡㅡ;;)
넵! 힘내세요~!
f(x)가 양의 무한대로 발산하고 g (x)가 음의 무한대로 발산하면 lim f (x)+g (x)=무한대-무한대 꼴이니깐 무한대-무한대는 수렴할 가능성이 있기때문에 저명제가 거짓이지 않을까요??
어떤 명제가 거짓임을 증명할 때 반례를 드는 것만큼 논리적인 게 있을까요..