[공부법]변화할 수 있을까?
게시글 주소: https://app.orbi.kr/00060654072
[공부법 영상 : 독재 공부법 ▼]
어떻게 하면 제가 변화할 수 있을까요?
수능 공부를 시작하는 고3이든,
재수를 결심한 재수생이든,
이전과 다른 모습으로 2023년 불태울 방법을 생각합니다.
하지만
우리는 엄청난 결심을 한다고 해서
내가 바뀔 수 있을지? 의문이 듭니다.
독학재수든, 재종학원이든, 고3이든
이제부터 변화해봅시다!
공부법 영상이 도움이 되었다면 좋아요 ♥
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
요즘은 안하시나 가장 최근에본게 서코가서 여장하고 샌즈랑 셀카찍은거던데
-
얼버기 2
ㅎㅇ
-
일단 살좀 빼야 도전가능할듯
-
정수기가 없다는 사실이 나를 미치게함 냉라면 못먹겠네 쿠지라이식 라면이나 먹어야겠다...
-
자려고 누웠는데 잠이 안와서 가장 기억에 남는 글이랑 혜윰님 댓글 달린글 빼고 다...
-
고로 매우 마초적인 행위라고 할 수 있음
-
오늘부터 제 제1 모토는 서로 사랑하며 살자 입니다
-
객관적으론 진짜 개빡센 문제일텐데 또 굇수가 오셔서 20초컷 하실 거 같음..
-
나도 웃어서 뭐라 못하겠다 그니까 복면강도 컨셉 ㅇㅈ이나 보고가셈
-
정모 13
정시모집
-
제가 프세카에서 좋아하는 친구인데 얘랑 키 똑같다면서 플러팅 먼저 했잖아요 빨리 해줘요 급함
-
본계정에 여자 비키니사진 좋아요 수만개는 눌러둔거같은데 이거 언제지우냐 대학 가기전까지 지워야하는데
-
에구구… 거기는 기공나오는구멍이여…!
-
없으면 빛삭
-
과시는 결핍이다 5
과시하는 사람은 보통 어딘가에서 결핍이나 열등감을 느끼는 경우가 많았던 거 같음. 아님 말고
-
옛날엔 오르비좃목 -> 옯스타,오픈채팅 -> 실제만남 많앗는데
-
와 저건 진짜 심하다
-
타비비토노요오니 0
우타카라우타에
-
X카스 같은 매력이 있는듯 인증을 볼때마다 아 괜히봤네; 싶지만 쉽게 끊지 못하는...
-
강아지 잔다 3
기여워요
-
돈으로 환전 가능함?
-
내년에같이컨설팅팀차릴분 18
70만원은 너무 비싸니깐 40~50정도로 가격으로 경쟁력을 가져가는거임 거기에다...
-
치뱃이였는데
-
와
-
방금 시대갤에서 보고 생각난건데 현장에서 1번 보고 너무 대놓고 맞는말만 해서...
-
오늘만큼은 goat인거야
-
실검 1위 찍고 갑니다 11
ㅂㅇ
-
진짜 조심해야하는건 허언증보다는 나르임 허언증은 그냥 정신이 미성숙하고 귀여운거임...
-
진짜 라이트하고 건전하게 하는중임
-
빼는 건 그저 그런데 빼고 나서 구멍생기는 게 비호임
-
4합 3 이내를 이렇게 맞추는거였구나
-
왜메인두개갔지 0
-
이참에 딴 사진도 올림 13
임마들은 얼굴안나와서 안지움 우하하
-
이말만 몇번째냐.. 자고 일어나면 밤까진 안들어오는걸 목표로 할게요 응..
-
과잠 꼭 입어보고 싶은데 찾아보니까 1학년은 과잠이 없고 2학년 전공선택때...
-
그냥 간단하게 답변함
-
앵그리버드닮았던걸로 기억함 태지가 조리돌림 겁나했었거든
-
심심해요
-
스터딘 마크2 신가
-
ㅈㄱㄴ
-
고닥교 친구중에 이재명닮은 애 있었는데 맨날 찢재명이라 놀리다가 크게 혼남
-
ㅁㅌㅊ임
-
화.학혁명님 그립습니다 18
오르비에선 그렇게까지 나쁜새끼는 아니였는데..
-
타도시 대학 0
엄마아빠랑 떨어져서 공부하기가 싫음ㅜ 고등학교 때 기숙사도 2달 반만에 런쳤는데...
-
ㄹㅇ 부엉 게이가 갑자기 연애 기만 어쩌구 저격하길래 쫄아서 사렸는데 그런건가
-
전 아스팔트에 갈린 손석구 많이들어봄
-
ㄹㅈㄷㄱㅁ ㅇㅈ 10
오늘의 개호감 고닉의 첫 팔로우는 제가 먹었습니다 캬캬캬 행복하구만
생각만 했던걸 실제로 듣게될 줄이야 ㅠㅠ 맨날 입무새인데 반성합니다
선생님 개념이 부족한건지 문풀량이 부족한건지는 어떻게 스스로 진단해볼수 있을까요
좋은 질문입니다!
수학을 잘하기 위해서 '연결 관계'가 중요하죠.
이 연결 관계가 수학적 논리에 출발입니다.
개념과 개념사이의 연결 관계
개념과 문제사이의 연결 관계
문제와 문제사이의 연결 관게
문제와 답사이의 연결 관계
수능 수학을 잘하기 위해서 총 4가지의 연결 관계가 튼튼할 때 잘 할 수 있어요.
이 중에 개념이 부족한 건
'개념과 개념사이의 연결 관계'
'개념과 문제사이의 연결 관계'
가 잘 안될 때 발생하는 현상이예요.
예를 들면, 문제를 풀 때 내가 배웠던 개념이 적용되지 않았을 때
개념에 빵꾸가 났다고 볼 수 있고
수 Ⅱ의 미분법 개념이 약해서 미적분 과목의 문제를 풀 때
곤란함을 느낄 때 개념이 약하다고 볼 수 있어요.
답지보고 만약, '아 맞다!' 를 한다면 10중 4-5 는 그 부분의 개념이 약해서 그런걸 거예요.
문풀량이 부족하면
문제와 문제사이의 연결관계 와
문제와 답사이의 연결관계 의
연결관계들이 약할 수 밖에 없어요.
A, B 문제가 사실 A 문제와 A문제의 확장 이었다고 가정해요. ( A'=B )
내가 기존에 풀었던 문제를 토대로 새로운 문제에 적용하는 것이 잘 안 될 때,
이를테면, 문제 푸는 스킬은 알겠는데 문제를 막상 못풀겠을 때 문풀량이 부족하다고 보여질 수 있어요.
혹은 문제와 답 사이의 논리적 추론을 하는 훈련이 덜 되어서
문제를 끝까지 풀어나가는 힘을 가지지 못했을 때도
문풀량이 부족하다고 여기면 돼요 : )
일단 제 책 <수학의 단권화> 수2 미분법 개념연구 테스트중 일부를 올려봤어요 : )
만약 아래 개념 연구에 답을 잘 못하겠다면
개념이 부족한 거 일 수도 있어요 : )
좋은 질문에 답변을 하다보니 거의 칼럼을 하나 썼군요!
도움이 되었다면 너무 좋겠어요! 새해 복 많이 받아요!
상세한 답변 정말 감사합니다 행복한 연말 보내세요!!