수학 퀴즈 하나 내볼게요 (수하, 수2)
게시글 주소: https://app.orbi.kr/00058614944
일대일 대응 함수 f(x)와 g(x)에 대해
이 성립한다.
의 값을 구하시오.
+ 풀이 과정도 보여주면 더 좋습니다.
+ 위 성질을 만족하는 f(x) 와 g(x)의 예시를 아는 사람은 댓 ㄱ
(대학 미적분학 배우면 뭔가가 보일 수도 있습니다)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
하 ㅜㅜ 후회된다
-
인증메타후기 1
나랑같이n수해서의대가자
-
자야지 2
눈이 감기네
-
후다면 너무 슬플거같음
-
문재인 정부 사드 도입 늦추기 위해 중국·시민단체에 기밀 유출 의혹…검찰 수사 착수 1
문재인 정부 당시 안보라인을 책임지던 고위직 인사들이 사드(THAAD·고고도 미사일...
-
진지함ㅇㅇ
-
흠
-
반수 성공하고 바로 입대, 의대 증원하길래 올해 수시 준비해서 한 번 더 뛰어들어서...
-
스펙 평가좀 2
숏치고 조졋음뇨
-
아니면 무조건 시험 종료시까지 고사장에 있어야하나요?? 대학 시험처럼 시험치고...
-
형아... 3
웅웅
-
어디가 좋을까요?
-
턱걸이 20개는 땡겨야 남자라고 생각함뇨이
-
S7 액정이 좀 깨져서 터치가 좀 답답해졌어요ㅠ 액정가는데 16만원정도...
-
'사드' 지연 위해 중국에 2급 기밀 유출…도마 오른 文 정부 안보관 0
전임 문재인 정부와 더불어민주당의 안보관이 도마에 올랐다. 최근 감사원이 문재인...
-
ㅇㅈ 13
펑
-
ㅈㅅㅎㄴㄷ.. 1
-
입실시간 제외 순 시험시간이요!!
-
ㅇㅈ 15
-
ㅇㅈ 6
펑.
-
진짜 완벽한 고대상이다..
-
입술피어싱 너무 하고 싶은데 인식이 좀 별로일려나..? 딱 귀랑 입술만 피어싱할까...
-
옛날엔 현실의 예쁜 사람 보면 기분 좋아지고 그랬는데 이제는 그냥 아무런 감정이...
-
ㅇㅈ 13
못 생김 주의) 펑
-
ㅠㅠ
-
여잔데 친구없을까봐 ㅇㅇ
-
본거또보고 17
다음에혼자인생네컷이라도찍으러갈께요
-
ㅇㅈ 3
펑
-
미쿠짤 1
영역전개 “미쿠만발”
-
ㅇㅈ 6
9라임
-
ㅈㄱㄴ
-
아무도 안 보겠지???
-
이 글을 보는 너 인증해라.
-
그림체.
-
재탕올리면 본거또보고 라고댓달릴 확률99%라 못하겠어요
-
원래 멀티를 개잘햇거든요? 근데 요즘은 하나에 꽂히면 그냥 그것밖에 못해요 예를들어...
-
"도미노 현상" 공장 줄줄이 폐쇄…'K-철강' 쇠퇴의 그늘 0
산업의 쌀이라 불리는 한국의 철강 업체들이 줄줄이 공장 문을 닫고 있습니다. 중국의...
-
요즘 헬스하는데 0
진짜 근육통이 너무심함 미치겠따
-
일주일에 150분 이상 운동했더니 나타난 효과... 평균 사망 위험 22% ‘뚝’ 0
빠르게 걷기, 자전거 타기 등 중강도 신체활동(PA)을 일주일에 150분 이상 하면...
-
ㅇㅈ 2
사실 그런 건 없고 제가 좋아하는 민지 짤 보고 가세요
-
거기 지나가는 당신! 31
여캐일러 하나 주고 가요
-
그것은 바로 주식 안 하기! 주식 하는 사람들이 돈을 잃기에 나는 가만히 있으면...
-
알게모르게 고충이 있음 거기에 egg까지 크면..ㅅㅂ
-
미~적백미적백
-
쪼끄매서 귀여움
-
ㅇㅈ 15
숏충이의말로ㅇㅈ
-
물2 어카디 1
현역이고 물1베이스 나름 있는데 1) 물2 과외받으면서 전적 의존(나름 고수에...
-
욕하고는싶었는데 대댓달려서 박제당할용기는없는거임?
-
아니나성희롱당한것같음 11
여행중길거리를지나가다가가게아저씨가컴인싸이드라고했는데 이거이상한뜻맞죠어떻게이런말을할수가있죠?????
-
중앙대논술 1
중앙대 논술 기하 확통 비중 큰가요? 논술 준비 하나도안돼있고 최저만 맞췄고...
정의역이 정확히 명시가 안되어있는데 그냥 실수전체집합으로 잡아요?
아뇨 히히
혹시 답이 0인가요?
네 맞아요
f^-1의 존재성 밝히려면 공역이나 치역도 잡아줘야하는데 그냥 존재하겠거니하고 진행하자면
f(c)=1인 c가 존재한다고 하자.
문제에 주어진 등식에 대입하면, g(c)=0이다.
이때 역함수의 정의를 상기하면 f^-1(1)=c 이므로
구하고자 하는 값은 0이다.
구웃구웃
조금은 아쉬운 지점이 그냥 f를 전단사함수라 주는게 어떨까 싶네요
아 일대일 함수라고 잘못썼네 ㅠㅠ 공부한지 쫌 오래돼서 실수
당직 언제 서세요
그런거 물어보지마세여 ㅠㅠ
낄낄
등식의 양변에 f^-1를 대입하면 x^2-g(f^-1(x))=1 x=1 대입하면 0 이런 느낌인가요
네 그거도 완전 좋은 풀이예요
역함수 논리로 딱 풀리네용
함수는 그냥 f(x)=x, g(x)=sqrt(x^2 -1) 정도 잡으면 되려나요
네 사실 구간만 일대일대응 되게 좁게 잡으면 아무거나 다 되긴 해요
제가 의도했던 거는 f(x)=secx, g(x)=tanx 였어요 시컨트는 구간 (0,pi/2), 탄젠트는 구간 (-pi/2,pi/2) 를 정의역으로 하면 일대일 대응이 되고, 삼각함수 제곱관계 식을 만족합니다
예시 쌍곡함수 있습니다
정확히보셨군요