<3월 학평 후 마음가짐과 수능 출제 경향의 변화,규칙성문제 4가지 풀이>
게시글 주소: https://app.orbi.kr/0004421296
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㄱㅊ음? 서점에 잇어서 살까말까 거민중
-
의치한 목표로 한번 더 해볼까 하는데 2과목 끼는게 나을까요 아님 11으로...
-
만화 ㅊㅊ좀 0
만화책보고싶네 갑자기
-
윤도영의 입대상담
-
누가 머라함?
-
친구가 갑자기 자긴 4개나 뽑아야 한다길래 겁 먹음..
-
분당인들한테 성남 사냐고 말하면 엄청 싫어하더라고요 3
약간 홍콩 사람들이 자기 중국 산다고 말하지 않는거랑 비슷한 느낌
-
11명이 모두 허수인 가능세계 존재함?
-
스카갈까 7
요즘 너무 나태한 느낌 ㅠㅡㅠ 가서 라인 ck 볼 거긴 한데 ㅎ.ㅎ
-
이유도 아시면 설명해주세여
-
앞머리 다운펌으로 누를건데 이머리 가능함 ?
-
현역때 생지 6모 92 / 93 9모 79 / 91 수능 100 / 91 (인데...
-
260등 정도임 정확히 260은 아니고 260정원인데 점공률 50프로 정도던데 ㅠㅠ...
-
영어 지원 좀 해라 ㅡㅡ
-
AI 폼 미쳤다 0
강아지 ㄱㅇㅇㅇㅇㅇㅇ
-
이제 청소년은 이미 졸업 했고 몇달 있으면 미성년자 딱지도 떼는데 내가 언제까지 말...
-
그냥 하루에 10시간 이상 공부시간 박으면 그냥 방구석에서 메가스터디 인강 강사들...
-
상위권들한테 공부법 물어보면 자기는 별로 특별한 게 없다고 함 들어보면 다 거기서...
-
제발요
-
ㅎㅇ 2
ㅎㅇㅎㅇ
-
술집 알바하는데 2
이렇게 추우면 오늘 손님 많이 안 오겠지??
-
집에서 나는 23
-
대신 시에스타를 드릴께요
-
이거 허위표본일 가능성 있나요? 제발 그랬으면 좋겠는데
-
그해 수능은 치러 가야지 히히
-
왜 to v와 ing를 반대로 해석하냐고 왜 영어를 더 싫어하는거지 수학이 훨씬 joat인데
-
닥전임 닥후임
-
재밌는 드라마 추천 점
-
노곤하구마이 2
호에에
-
25수능 화작 응시 원점수 98점 받았습니다 정석민 비독원 완강 후 파이널 커리...
-
미적분 인강 1
현우진 시발점 들으려고 하는데 학원 안 다니면서 충분히 가능할까요?? 미적분이란...
-
혹시 팀플 많아요? 팀플 진짜 개극혐인데 하..
-
딱 원하는 것만 요리조리 섞어주네 하늘을 달리다 비긴어게인 박하사탕 비긴어게인...
-
할일 못끝내면 인증함.
-
저메추 미리 받아요
-
경북대 합격생을 위한 노크선배 꿀팁 [경북대 25] [기숙사] 0
대학커뮤니티 노크에서 선발한 경북대 선배가 오르비에 있는 예비 경북대학생, 경북대...
-
근데 이거 작가 양반 ㅈㄴ 악질인 게 7월에 복귀한다 해 놓고 2025년이 됐는데도 안 옴
-
분명 100년만 기다리면!!!
-
경희대 아시는분?
-
재수 반수 할때 3
평가원 말고 교육청 모의고사 하심? 그냥 풀기만 하나 아니면 피드백ㄲㅏ지?
-
우선 저번 글에서도 말했지만 전 수능을 몇번 본 사람입니다 솔직히 저도 수능으로...
-
SKY아래부터
-
저능하도다.. 2
테스트 개망햇습니다 갑자기 내가 수능 어케 이정도로 봤지?하면서 대견해짐 삼수 못하긋다…
-
전 해법문학 여러분들은? 컴팩트하게 할만한 교재 있을까요?
-
ㅁㅌㅊ 0
학점보다 높아서 자랑좀 함
-
고1 3모를 1컷 간당으로 틀려놓네....ㅁㅊ 역시 수능끝나고 국어 혐오증 생겨서...
-
중앙대 로스쿨은 왜 동급간 대비 아웃풋이 박은거임? 0
로스쿨 명문 아닌가??
-
검사임용? 헌재연구원? 변시합격률?
A형 21번과 B형 20번 인것 같습니다
B형 21번은 규칙성 문제가 아니라 다른 문제 였거든요
글쓰는과정에서 실수...감사
오.. EBS경찰대 기출의 그선생님이시다.. 반가워요ㅎㅎ
계산이 많이 복잡해졌다는거 너무 공감되네요. 저도 이문제 계산실수로 틀렸는데 이런거 줄이려면 많이 풀어보는 방법밖에 없겠죠?
핵심유형을 확실히 알고 평소에 다양한 벙법으로 생각하다 보면
간단하게 풀 수 있고 그러다보면 실수도 줄지요
규칙성이 오락가락하는거라
이문제는 계차수열로 풀다보면 복잡해져서 실수가 나올 수도..
단순한 실수라면 후반으로 가면서 자연히 없어지니 걱정 안하셔도 됩니다
와 남언우 선생님이시다!!
2011년이었나 그 때 수능개념특강 1~2등급 전용 강의 정말 잘 들었어요.
그거 프린트해서 필기한거 아직까지도 가지고 있답니다.
선생님께는 정말 개인적으로 감사드립니다.
제 수학 실력의 밑바탕은 거의 선생님에게서 나왔다고 해도 무방할 정도입니다.
기억해주니 감사
당시만 해도 ebs가 상위권용 강의를 기획할 때라..
이후에는 하위권용 강의를 많이 개발하는듯...공익방송이고
전국에는 하위권학생이 훨씬 많으니 당연하지만 ..
그럼 벌써 3학년 ㅎ 이제 또 미래를 진지하게 생각할 때이네요
너무 너무 최고 였던 남언우 선생님...
우연히 클릭 했다 보여서 깜놀..
감사합니다
앞으로의 인생도 좋은 분들과 함게 더욱 발전하시길~
잘 들었습니다!! 마지막 방법 진짜 신기하네요!!
예를 들어 n(n+1)/2를 n으로 나눈 나머지를 An이라 할때
A1+A2+...A10을 구하라 와 같이
n(n+1)/2 를 n으로 나눈 몫이나 나머지를 갖고 수열 문제를 만들 수도 있습니다 그럴 땐 마지막 방법이 유효하겠지요
한 문제를 깊이있게 생각해본다는 것은 문제해결력향상이상의 효과가 있습니다
군수열로 푸는 첫번째 방법이 이해가 잘 안가네요.
홀수행이 1+2+3+~~~~~~~~(2n-1)이 되는지 알려주실분 누구 없나요?
n군(n행)에는 n개의 연속한 수가 있지요
1행에는 1개, 2행에는 두개, 3행에는 3개가 있으므로 3행까지 쓰인 수의 총 개수는 1+2+3=6이고 수는 1부터 연속해서 쓰이므로 3행의 끝수는 6이지요 마찬가지로
홀수행(2n-1)일때는 2n-1행의 마지막수이므로 그때까지
즉 1행부터 2n-1 행까지 쓰인 수의 총개수와 같습니다
따라서 1+2+3+...2n-2+2n-1 이 됩니다
아 잘못해서 비추천 되었네요. 죄송합니다.
군 수열은 쓴이유가 n의 배수가 마지막 숫자에 해당하고
홀수번째 군수열의 행의 개수 합이 일치하기 때문에 군 수열의 합을 쓴건가요??
추가해서 질문드리자면 해설로 볼땐 이해가 가는데 막상 시험문제로 나오게 되면 어떻게 저렇게 발상할 수 있을지 궁금합니다.
몇번째 수인지 찾으면 되는데 몇행의 몇째수인지 알 수 있으니 몇번째 수인지도 금방 알 수 있지요
군수열 문제 몇개만 풀어보고 훈련하시면 전형적인 유형에서 홀수행과 짝수행규칙이 반복되는 것임을 알 수 있을 것입니다
위 수열에서 기본적인 군수열문제가 되려면
10행 세번째 수는 얼마인가? 또는
48은 몇행 몇번째 수인가? 등이지만 조금 변형한 걸로 보시면 됩니다
수열의 규칙성 문제가 어떤게 있는 지 학습하시면 됩니다 발견적추론을 기본적으로 할 수 있어야 하지만 고난도문제는 발견적추론과 계차수열만으론 해결이 힘들 수 있습니다
본인이 알고 있는 것들을 생각해 보시면, 예를 들어
어떻게 등비수열의 합을 그렇게 구할 생각을 할 수 있을 까요? 더 어려운 계차수열도 알고 있잖아요?
학습입니다. 배우고 익히고...충분히 익혀 둔다면
다음에 비슷한 문제를 봤을 때는 충분히 생각할 수 있을 것입니다 생각해 보지 않았을 뿐 어쩌면 현재의 실력으로도 충분히 풀 수 있는 방법입니다