변곡점에서의 접선/변곡점에서의 대칭
게시글 주소: https://app.orbi.kr/0004397580
이 두가지 내용은 정말 교과서를 눈 씻고찾아봐도 없는데
다들 인강으로 보고 오시는 건가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
공모 못 넣을 세트들..
-
캬캬캬ㅑ
-
하 민우야 난 너가 이렇게까지 잘 되길 ......
-
국어 고정1등급 나오는데 문학을 여태까지 책 읽어온걸 토대로 감으로 푸는 느낌이...
-
흠
-
음
-
겨울 굴 ㄹㅈㄷ네요 해산물 사라헤
-
수도권 메디컬 노리고 사탐 한개 하는거 어떻게 생각함?
-
한줄 한줄 읽을 때마다 나야, 신유형
-
사나이의 눈물
-
1. 소득이 있는 곳엔 당연히 세금이 있다. 2. 투자자 보호, 구체적인 방안,...
-
생활관에서 동기들이랑 보드게임 할듯..
-
더 많은 똥글
-
재수 수학 계획 3
~2,3월 : 뉴런 시냅스 한완기(평가원,교사경) N제 순서대로 : 4규 시즌1,2...
-
생윤 사문 생윤 윤사 사문 경제 전적대 = 경제학과 현역탐구 = 물리생명 목표대학...
-
사실상 원점수컷 파악 가능하잖아 하
-
넘 뿌듯하네요 ㅎㅎ
-
고2 4-5나오고 유베가는 길 한 번 듣다가 중간에 드랍했는데 이왕 듣는거 풀커리로...
-
157개ㄷㄷ 제가 오르비에서 보고 추천 넣은 분은 nn만원 버셨네요..
-
ㅇㅇ
-
중앙대 높공 너무 가고싶어서…
-
망햇뇨
-
현재 개인 프로젝트의 일환으로 ‘수능 시계 구매 여부 및 착용 방식’에 관련한...
-
정말 열심히 한다고 잘 됐으면 좋겠다고…. 근데 선생님저 이제 열심히 안 해요...
-
일단 면허만 나오면 제몸 건사할 돈은 나오는거아닌지 전공의 군의관 공보의가 돈...
-
프로필이 두 개인거임???
-
올해 고1수학 유의미하게 체감되심??
-
미적91점 6
미적 91점 백분위 몇나올까요.. 공통-4 미적-5입니다..
-
탐구 선택 질문 0
컴공 지망하고 있는데요 목표가 서울대, 고려대가 아니면 사탐 2개 해도 큰 지장 없을까요??
-
국어처럼 풀이 없이 빈칸에 대한 답만 쓰면 되는건가요
-
그래서 그냥 안먹음 가끔 죽고 싶으면 찾아서 주워먹음
-
지게나 타야겠네
-
코드기어스 그랜라간 메이드인어비스
-
양방향으로 가는 삼도극 ㄷㄷ
-
살이안빠지구만 0
큰일
-
과탐이를 계속할까....
-
ㅈㄱㄴ 물1보다 표본높음? 솔직히 인원수 2천명대라 ㅈㄴ 잘하는사람 백명만 있어도...
-
으흐흑
-
센츄 배지?(햄스터+빨간배경)에 top 0.1인가 써있는 배지 뭔가용
-
반수로 메디컬 환생을 노렸으나 수시충+의지 부족으로 실패 그리고 복학 여러가지...
-
옵치 특 0
10판하면 내가 못한판 2판 내가 케리한판 2판 1인분한판 5판 버스탄판 1판...
-
[속보] 尹대통령 "영어 1등급 컷은 좌파 카르텔의 조작적 선동" 3
尹대통령은 영어 1등급 컷은 좌파 카르텔의 조작적 선동의 결과라고 하며 1등급 컷을...
-
한국 만화인데도 습관적으로 오른쪽부터 보게 돼요.. 저만 그런가요??
-
ㅈㄱㄴ
-
탈르비합니다 5
오늘부로 탈르비합니다 현역 때부터 이제까지 정말 많은 도움 받았습니다 지금까지...
-
연습하면 인싸남 될수있음
-
이대약대 논술 1
난이도 어땠음? 작년기출보단 빡빡했는데.. 다들 어땠음? 3-1제대로 못풀고...
-
애니 추천좀 4
괴수8호 진격의거인 체인소맨 같은 세계관 확실한 액션물을 좋아하나봐요
-
저녁쯤 되면 하루동안 쌓인 피로까지 합쳐져서 이게 뭐 졸린 것도 개운한 것도 아닌...
알텍에서 쓰이긴하는데 증명과정을 쳐보니깐 대학과정이긴한데ㄱ고등과정에서 단순증명이 가능하더라고요.
한쌤이 즉각적인이해가 증 명보다 중요하다고하심.
참 학원 선생들이 신뢰가 안 가는게.....
한석원 선생 본인도 입이 닳도록 교과서 기출 외에 다 때려쳐라,
교과서에 나와 있는 것만 공부해라 전파하고 다니면서
정작 본인 수업에서는 교과서에서 전혀 나오지 않는 내용도 종종 다루고
숙제는 그렇게 저주하던 실력정석 풀기;
참;
"극점은 점대칭이다"라는 정의를 쓰시길래 인터넷에 찾아보니 대학과정 증명이라고 써있던데 제가 잘못찾았나보네요 죄송합니다
대학교에서도 그런거 적어도 제가 배운 범위에선 구체적으로 다루는 책은 못봤고요..
원래 변곡접선이 아닌 다른 교과서적 풀이가 가능한데 그렇게들 안푸시더라고요..
원래 곡선에서 만나는 점의 개수는 y=f(x)와 y=k의 교점이므로 방정식 f(x)=k를 구하는것과 동일하게 식구성을 할 수 있어요..
2012수능 19번이나 2014수능 30번이나 다 마찬가지 원리이고요..
접선의 방정식은 y=f'(a)(x-a)+f(a)인데 이것이 (0, k)를 지나니까
af'(a)+f(a)=k라는 방정식이 나오죠..세 점에서 만난다는 것은
y=k와 y=af'(a)+f(a)가 세 점에서 만난다는 뜻입니다.
교과서에서 대 주제로 반드시 다루고 있는 것이죠.. 방정식 f(x)=k의 실근은 y=f(x)와 y=k의 그래프를 가지고 해결한다고 나와있지요
그러면 명쾌하게 해결할 수 있을 것입니다.
참고로 y=f(x)와 y=k의 그래프를 가지고 해결하면 명쾌해지는 이유는,
수학 II 교과서에서 극대와 극소를 정의할 때 증감이 바뀌는 부분을 극값으로 정의했기 때문입니다.