올해 9평 수리 나형 21번 죽어도 이해안가는 저는 호구인가요?
게시글 주소: https://app.orbi.kr/0003898929
다른 인강강사들 강의나 인터넷에 올라와 있는 해설을 봐도 도저히 이해안가네요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
코가 막 가려움 0
재채기가 나올락 말락
-
미자공 친구가 한양대 두바퀴 투어시켜주고 노천극장가서 하냥대 명물 피자를 먹었는데...
-
신검만아니었어도...
-
어제 사실 11
특정을 당할뻔 했어요 대댓글 달리면 안지워진다는걸 어제 알았답니다 이러면서 배우는거겠죠..?
-
서연고서성한중+카포지디유까지 추천해주네 엄... (내 성적표 아님) 그래고 포는...
-
재수생입니다 올해는 꼭 메디컬 가고싶은데 이 성적으로 어디까지 갈 수 있나요?
-
지각이다 3
입에 빵을 물고 달리자
-
요약 : 분만시 문제가 있어 적절한 처치를 시행하였으나 아이가 뇌성마비가 생겼음....
-
뻘글좀 줄여야지 4
너무 많이 썼당
-
1,2번은 별 탈 없이 쓴거같고 3번 수리문제도 풀이과정이랑 정답 다 맞는데 이러면...
-
현재 활동한단 뜻인가요??
-
현역이고 1년동안 시대단과커라 탈거같은데 미적반에서 수12도 해주나요? 현우진도...
-
랑 친구하고 싶다
-
새벽에 인증메타였음? 12
누가인증했나요? 또나만못봤지
-
물리 사탐런 0
재가 지금 고2 모고 맨날 2등급 초반 나오는데 고삼때 사탐런 해야할까요? 가산좀이 좀 크길래...
-
그딴거 없나요
-
오늘도 과탐 등급 질문을 또 합니다 ㅋㅋ (시간 보내기용 ㅠ) 시갤에서 쓴 글 중에...
-
전세계 누구보다 의사를 많이 만나면서도 전세계 누구보다 의사를 못믿는 한국인들이란 도대체....
-
애초에 저거 외운다고 수학문제를 풀 수 있는건 아니잖아
-
기차지나간당 10
칙칙폭폭
-
피곤하고 슬픈 아침 12
-
국어 2.5 수학 5.5 탐구 1.5 영어 0.5 로 하려하는데 어떤가요?
-
내용 연결되는 게 많나요?
-
군수 해야겠음 0
리트 잘칠 자신 있는데(130이상) 현재 학교에서 학점을 개말아먹어서 4.2-3까지...
-
이번에 사탐런 해서 개념은 임정환T 들을건데 도표특강까지 정환쌤껄로 가도...
-
공군입대 때문에 12월 15일 시행되는 kbs 한국어능력시험에 응시할 예정입니다....
-
라고 땅우쌤이 말씀하시던데 (만점기준) 사실인가요?
-
왠지 팝콘각이 보인다
-
오늘 여행간다 0
키키
-
수학잘하는사람은 쎈만하고 자신이 못하고 삼등급정도이하다 마플 ㄱㄱ
-
작수 백분위 77 확통 정병호 비기너스 + 쎈 4점 기출 스타팅 블록 + 카이스...
-
현역 1등급 언매 특강 샘 추천좀 ㄱㄱ
-
시위는 이런과격하고 인간 본성의 동물적본성을 드러내야 그것이 투쟁이고 시위의...
-
예비고3 수학 모고 거의 2등급이고 (한번은 3등급) 미적 노베인데 이정환t 미적...
-
가능세계는 없는거니....
-
화1 1컷 50 사문 1컷 45~46 생윤 40점보다 표점이 낮다는 소문이......
-
올해의 첫 수학 N제를 모두의 친구에게 선물받음
-
힝
-
시른뒈?
-
미적 13, 22, 28 틀리고 1 띄울 것 같은데 영어 듣기 3개랑 43번 틀리고...
-
글 읽는 속도가 남들에 비해 좀 느린 것 같은데 글자수 많은 화작보다 문법 지식을...
-
결속밴드 인기투표 22
-
생각할게많네
-
진짜 말도안되네 저정도의 가치는 없어보이는데
-
부담스럽네,,,,,,, 뭐로 바꾸지,,,,,,
-
눈물ㅇㅣ ㄴㅏ 2
자고싶은데 못잤어
-
4주마다 결제하는 걸로 아는데 가격이 보통 어느 정도인가요??
저는 해설강의는 안보고
해설은 봤었는데 처음엔 뭔말인지 그 최솟값구하는 과정이 갑자기 탁막혔었어요 ㅠㅠ 나중에 다보니까 세세한 기초였다는거 ㅠㅠ
저도 이 문제만 시간날때마다 계속 풀고 해도 뭔지 모르겠더군요 제가 최대,최소에선 잘 안틀렸거든요 자연계 문제도 최대,최소는 잘 맞췄는데 이번 9평에서 이렇게나 어렵게 낼 수도 있구나 싶었죠
비타에듀 정현경샘 해설 봐보셨어요? 저도 이 문제만 해설강의 많이 찾아봤는데 정현경샘 풀이가 가장 명료한 것 같았어요.
한번 들어보니 다른강사들하고 조금 접근법이 다른 듯 하긴 하네요 정보 감사합니다
문제에서 주어진 조건을 만족시키기 위해서는
f(x)의도함수 가 -1에서 접하면서 한 실근k을 동시에 가져야됩니다.
따라서 f(x)의 도함수를 (x+1)(x+1)(x-k)를 둡니다
주어진 조건에 따라 k의 범위는 -1보다는 크고 2보다는 작거나같습니다.
문제에서 주어진 f의도함수 = (x+1)(x^2+ax+b)는 (x+1)(x+1)(x-k)로 표현할 수 있습니다.
양쪽 식을 전개하여 계수들을 비교해보면 a=1-k , b=-k 가 됩니다.
a^2+b^2 의 최대최소를 찾아야 되므로
(1-k)^2 + (-k)^2 의 최대최소를 찾습니다.
전개를 시켜보면 2k^2 - 2k + 1 이라는 2차함수가 나옵니다.
여기서 k의 범위가 -1보다크면서 2보다같거나 작으므로
k가 1/2일때 최솟값을 가지고 2일때 최댓값을 가집니다.
따라서 최솟값은 1/2 이고 최댓값은 5 이므로 최댓값과 최솟값은 합은 11/2 입니다.
아 이제 조금 알겠네요 답변 감사합니다
굳이 식 나열하지 않고 그래프를 그려보면 쉽게 풀려요. (-∞,0)의 구간에서는 도함수의 값이 무조건 음의 값을 가지면 되고, (2,∞)의 구간에서는 도함수 값이 무조건 양의 값을 가지게만 하면 되거든요.
이렇게 되기 위해서는 도함수 (x+1)(x+1)(x-c) 에서 c의 값,즉, c라는 실근이 0≤c≤2를 만족하기만 하면 되는겁니다. 한 번 그래프를 그려보세요. 0 보다 크고 2 보다 작은 구간에서 도함수 값이 양수로 바뀌는 함수를 무수히 많이 그릴 수 있을 겁니다.
이런 후에, (x+1)(x+1)(x-c) = (x+1)(x^2+ax+b) --> (x+1)(x-c) = x^2+ax+b 로 만드실 수 있구요, 좌변을 전개한 후 도출한 a,b의 값을 통해 a^2+b^2을 이차함수의 꼴로 바꾸고, 이 이차함수를 완전제곱식 형태로 바꾸세요. 그리고 0≤c≤2의 구간에서 최대, 최소를 구하면 됩니다.
이제 조금 상황파악이 됩니다 답변 감사합니다