문과인데요, 좌미분계수 우미분계수 일반적으로 사용해도 되나요?
게시글 주소: https://app.orbi.kr/0003671351
제가 이걸로 세번째 글을 올렸는데요. 죄송하지만 답변들 많이 달아주셔서 감사한데 오히려 더 혼란스러워졌어요...
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
예비고3인데 워드마스터 수능2000이랑 하이퍼2000 있는데 두개 같이 해도...
-
희망 놓지 않고 계신가요? 전 텔그랑 고속은 나쁘지 않은데 진학사만 4칸 줘서...
-
군만두 (1판 8조각 6000원)가 기막히게 맛있더라고요
-
7연패 ㅅㅂ
-
JR 패스 삼 8
홋카이도 에서는 반 필수 인듯...
-
경찰대 행정학과..캬 무게감 지읏대네
-
찬싸이언스 (인강) 에서 강의하고 계심
-
아 맞다 1
이거 레전드인 듯
-
친구들은 개백수라 부럽다 하는데 저는 시간이 남아돌아서 미칠거 같음 차라리 결과...
-
Intp+3수생 5
-
테스트 4
테스트
-
이왕이면 존예섹시로. ㅠ
-
현역 화작 확통 동사 사문 69수 순으로 14121 13113 13231 나왔습니다...
-
근데 이런기분인 애들이 조선천지에 몇천명이겠지
-
뉴비의 눈으로. 이미지 or 질문 중 하나 적어주셈
-
ㅈㄱㄴ
-
기차지나간당 8
(~˘▾˘)~♫•*¨*•.¸¸♪
-
나잡혀가겠다 철컹철컹
-
대체뭐라는건지알수없음
-
한국이 우주항공분야에 기초지식이 부족했고 관련 시장도 아직 작아서 걱정이 되네요....
-
이게 과1사1 하면 과탐 한과목 가산 받는 건가요? 아니면 아예 안 주나요?
-
군대갔다오면 3
2천은 일임형 isa 박아놓고 나머진 타이거슨피랑 ivv에 분산투자해야지 30살까지...
-
05가왜삼수임? 5
어라라라
-
텔그에서 90퍼대였던것들 6칸떠서 복학각잴까 진지하게 고민중이었는데 업뎃후로 7~8칸댐
-
삼수할려면 군연기 따로 신청 해야함? 아님 그냥 알아서 삼수하고 군대 가면됨?...
-
어디서 보면 월400 어디서 보면 월700 메디컬쪽은 사람들마다 말이 다 다르네
-
더 이상 오르면 곤란합니다..그만그만????????
-
수행하기싫 2
-
니게tv 34일차부터 올릴만한 아이돌 추천받습니다. 3
33일차(내일) 트리플에스 종료, 34일차부터 올릴만한 아이돌 추천받습니다,
-
6평 백분위 100, 9평 백분위 99, 수능 예상 백분위 100인데 수학과외...
-
큰일났음 1
비기너스 듣고있는데 이번에 비기너스 개정되면서 기존 강의 내려갈 가능성이 있다네요 어쩌지..
-
처음들어봐요
-
맞팔 구해요 15
금테 미쿠가 되고싶은 밤이네요 잡담태그 잘담!!
-
드디어ㅠㅠㅠㅠㅠ 다시는 비누로 목욕시키지 않을게
-
대구의 왕 3
-
왜 미적 만점받을 실력도 안되면서 만점표점따지고있었을까
-
ㅇㅈ 4
저녁 ㅇㅈ
-
본연의목적을잃고 뻘글러가됏네...
-
지금 문자알림신청 해도되는건가요? 아님 1월달 가서 신청이 열리나요?
-
실모 관심 있는 분은 쪽지주세요
-
종강을 바란다
-
일본 가보고싶다 7
그치만 혼자가면 국제미아가 될 것이에요...
-
그거 어떻게 됨??
-
일본어 잘 하시는분? 17
유진 이랑 도모다찌가 무슨 차이에여?
-
왜 룩이 대각선으로 움직여 ㅋㅋ
다항함수는 도함수가 무조건 연속이거든요,
다항식으로 써있어도 구간마다 함수가다른건 다항함수라고 안해요.
다항함수의 정의를 다시 확인해보세요
각 구간 내에서 다항함수기 때문에, 그 도함수도 역시 각 구간 내에서는 다항함수입니다.
구간에 따라 다르게 정의된 다항함수가 전 구간에서 미분가능하려면,
이미 각 구간내에서는 연속이고 미분이 가능하기 때문에,
구간의 경계값에서만 연속과 미분가능성만 따져주면 됩니다.
그래서 구간 경계값에서 우선 함수값을 구해서 연속인지 확인하고,
함수가 전 구간에서 연속이 된다면, 미분가능성은 미분계수의 정의를 사용하지 않고,
도함수의 좌극한값, 우극한값을 조사하여 같으면 미분이 가능하다고 말할 수 있습니다.
그 이유가 함수는 연속이지만 도함수가 불연속이여서 도함수의 극한값과 함수값이 다른 사인뭐시기 함수같은 경우가 없기 때문이죠
구간에 따라 정의된 함수가 "다항함수"이기 때문에 도함수의 극한값으로 미분계수를 구할 수 있는 거구요.
그렇다고 하여 "도함수의 좌극한"과 "좌미분계수"가 동일한 개념은 아니라는 점에 유의하세요.
좌미분계수란 미분계수의 정의(f'(a)) 중 좌극한 값(lim h->0으로 갈 때라면 -0을, lim x->a로 갈 때라면 a-0)을 의미하구요,
도함수의 좌극한이란 f'(x)를 구해놓고 lim x->a-0을 취하는 개념인데,
그 두 값이 반드시 일치하지는 않습니다.
그리고 도함수의 좌극한과 우극한값이 존재하지 않더라도, 미분계수는 존재하는 경우도 있구요.
아...그렇군요. 감사합니다.
그런데 제가 나름 자료를 찾아봤는데 미분계수의 좌우값을 좌미분계수,우미분계수라고 하는 사람도 있고 도함수의 좌극한우극한을 이용하는걸 좌미분계수,우미분계수라고 하는 사람도 있네요. 이게 통일된 용어가 아닌가요?
어쨌든 이런 용어는 넘어가고 원함수가 미분가능하다고 해도 도함수의 연속성은 반례가 있기때문에 보장되는게 아니라는거죠? 다항함수라면 미분해도 연속이니 보장되지만 구간이 나눠진 함수는 다항함수라고 볼 수 없는거고...
참 이거 사용하기 까다롭네요.