수능특강 수1 B형 행렬2단원 발전유제 7번 반례찾기문제.
게시글 주소: https://app.orbi.kr/0003646331
이문제............................................................하.......................어떻게 생각하시는지..................
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
캬 4
ㅁㅌㅊ?
-
개구라입니다 죄송합니댜 ㅠㅠ 예비 고3 국어 커리 평가좀여 국어 : 독서(김동욱)...
-
손바닥으로 하늘 가리는거 개잘하네;; 확실히 동덕여대보단 똑똑하다
-
원랜 미적이라 확통쌩노베인데 여러 요인 따지다보니 확통에 마음이 가서 그냥 지금...
-
동시에 학사 두개 준비 가능??
-
탐구 털려서 다시하면 ㅠ 수학은ㅜ뭐해야할까요 기출은 보기만 해도 그간의 고생이...
-
(전과있는사람한테 같이사는조건으로 계약서쓰고 수능준비한다는썰) 씨발 말이되냐고 ㅋㅋㅋㅋㅋ
-
선데이는 명전만
-
수변최고돼지국밥 본점 왔는데 맛있네오 웨이팅 말도안되게 엄청나다는데 월요일새벽이라 스근하게 입장
-
욕심 없는 사람이면 모르겠는데 욕심은많은데 노력을 안하면 정말 불행하게되는거같음...
-
서로 요구하는게뭐임뇨 [ ex) 물리는 변화량체크를잘해야함 화학은 계산이빨라야한다등등..]
-
이 정도면 어느 정도 갈 수 있나요? 이것저것 찾아보고 있는데 누구는 건대도 힘들...
-
진짜임뇨
-
내가 물스퍼거가 되면 되는 것 아닌가!
-
술마셔서 땡김뇨
-
잠뇨 9
ㅂㅂ
-
대학가면 이런것도 알려주나 일단 책이라도 읽어야하는데
-
조회수 대비 업로드 되는 글 수 이게 맞아?
-
꾸덕 바삭한 쿠키가 먹고싶다
-
옯창임?
-
이해가 ㅈ도 안됐음뇨 ㄹㅇ
-
https://youtu.be/rx6gz2I_suk?si=F7ltEkRc_jjWSiN...
-
내신 별로 안남았긴했는데 자료가 너무없어서,,1년에 5만원이고 사람모일때마다...
-
야식에 혼술 4
이때가 요즘 내가 제일행복한 순간일듯
-
하
-
어떻게일어나지?
-
윤석열을 타도하자같은 이런게 진짜 존재한거었나요 ㄷㄷ..
-
심연을 들여다보자
-
앞으로도 즐거운 시간 보내요
-
야식ㅇㅈ 3
-
설뱃 갖고싶다
-
멈춰야 하는 것 정신건강에 좋지않아요
-
결국 혼자다 혼자 ~
-
이번에 로지텍 무선마우스 자동충전해주는 패드 5만원에 핫딜 하던데 사고싶음......
-
잠이 안 오네 중간중간 깨긴했는데 나도 내가 15시간을 잘줄은 몰랐지
-
하... 다들 잘자요
-
가운데를 크게 벗어나지 않네
-
나중에 끄면 아무도 없다는 게 슬픔뇨
-
너 외향적이지? 2
-
늙어서 점차 꺾인건지 소신을 유지하고픈 마음보다 주변 사람에게 미움받을 무서움이 더 크다
-
자퇴의 최대 장점 13
https://youtu.be/7fy1eFEkrpU?feature=shared 이...
-
캔맥에 짜파게티랑 10
김치먹을예정
-
ㅇㅈ 8
-
수험생활시절 많은 도움을 얻었던 오르비 시간은 흘러 어느덧 28살이되었고 좋은학교...
-
사실은 12
아직 어플도 안 깐 범부입니다 그동안 크롬을 애용했음뇨
-
정치테스트 해보니 내가 되게 보수적이었다는 걸 깨달음
-
9모때 시대만 블랭크 맞췄다그래서 ㅈㄴ불안하네
-
아직 재밌는데 몸이 안 받아주네
-
ㄹㅇ 지금 소신껏 일하면 조리돌림 당해요??
이비에스가 원래 저렇다고 생각해요.
ㄱ같은 경우 ()^2=0인 ()만 찾아주고 A+B=()이니까 A,B 적당히 껴 맞춰서 만들면 반례 충분히 만드는데
ㄴ같은경우는 참인거 가볍게 증명할 수 있는데
ㄷ같은경우는 어쩌라는건가요....................................... 아닌거같은데아니라고확신할수없는.............................
제가 이런 경우 ㄷ때문에 틀리거든요......................................맞긴 하는데 시간을 오래잡거나........................
찝찝한 상태에서 넘긴다던가...............
태그가 달려서 댓글을 좀 달아보자면 ㄱ번 수준에서만 학습하시면 충분합니다. 출제메뉴얼에선 EBS에 있는 문항 중 고교 교육과정의 핵심이 되는 문항만 출제하게 되어 있고 여태껏 그렇게 내어 왔기 때문입니다.
여지껏 수능기출에서는 ㄷ과 같이 개념없는 반례찾기 문제를 낸 전례가 있나요? 없...없겠죠....??ㅠㅠ
버리기까지 할 필요야....
ㄴ) ( A+B)(A+2B)=E 이면 (A+B)(A+2B)=(A+2B)(A+B) 이므로 AB=BA이지만
ㄷ) (A+B)^2 =E 이라고 해서 AB=BA라는 보장은 없다.
조건에서 주어진 위 2개 지문의 차이점만 비교해 보세요~~
ㄴ정도야 증명하기는 쉬운데 ㄷ같은경우는 `보장은 없다`에서 끝나잖아요.......................
모의고사같은경우에 `보장은 없다`가 논리의 비약이 아니라면 99% 맞는 경향을 보이긴 하는데
그 문제가 채점할때까지 찝찝하다는거.....................
중요한 건..........수능에서도 찝찝함이 남아 멘붕사태가 일어나면 어쩌나.........해서요..
(ㄷ)처럼 틀린 명제를 옳은 것인양 증명하려고 하지 않나요?
그런 학생들이 상당히 많다는 거...
반례를 찾기보다는 논리의 인관관계를 생각하심이...
'보장은 없다'라는 의미는 논리적 인과관계가 없다는 의미임.
논리적 인과관계가 성립하는지 안하는지............................
시험장에서 그러한 판단을 내린 자신을 믿어도 되나요...?
간과하고 지나가서 실수한적이 한두번이 아니라서요........
항상 100이아닌 96을 맞는 경우가 허다해서요...........
(게다가 몰라서 틀린 것도 아닌데)
근데 행렬 ㄱㄴㄷ에서 주어진 조건과 행렬의 기본 성질로 식을 유도해낼 수 없다면 다 틀린 거라고 봐야 하지 않나요? 제 경험상으론 주어진 식을 유도해낼 수 없는데 보기가 참인 적이 없었고 또 그게 유도를 불가능하니 거짓이라 생각하는데..
사실상 거짓이라 생각하고 시간이 남으면 반례를 찾아보시구 못찾아도 논리적으로 안맞으면 틀렸다고 하는게 가장 합리적이죠
ㄴ번같은경우는 수능에서도 나올 수 있는 문제 같고요, ㄷ번은 그냥 A,B에 관해 묶인다? 정도로만 알면 될거 같네요.
반례찾기 쉬운데요....흠....