수리영역 기출문제의 논리적 접근 (함수의 볼록성)
게시글 주소: https://app.orbi.kr/0003447649
이번 글에서는 함수의 볼록성에 관해서 다루어보려고 합니다.
함수의 오목,볼록은 수능에서도 몇 번 출제가 됐었고, 논술과 면접에서도 많이 나왔던 소재입니다.
수능에서는 볼록 '그래프'의 특징에 대해서 묻고, 논술과 구술에서는 f''(x)>0(<0)이므로 f'(x)가 증가(감소)라는 것을 이용해
원하는 모양으로 식을 다루는 능력을 봅니다.
이를 먼저 알고서 문제를 풀어보겠습니다.
(96년 수능)
ㄱ,ㄴ을 보고서 어떻게 풀어야 하는지 바로 떠올라야 합니다.
지수/로그함수 그래프 문제에서처럼 분수식을 '기울기'로 해석하는 거였으니까요.
비록 이 문제가 훨씬 쉽지만 모두 공통된 아이디어로 진행되고 있음을 느끼셔야 합니다.
그래서 이렇게 확인하면 끝입니다.
이제 볼록성을 통한 f'(x)의 증가/감소 여부를 통해 논리적으로 풀어봅시다.
이 문제는 그냥 그래프로 주어졌지만 조건을 달자면 양수 x에 대하여 f''(x)<0, f'(0)=1 입니다.
식의 모양을 통해 어떤 함수를 가져와야 하는지는 감이 와야 합니다.
(05년 수능)
이 문제는 ㄷ보기를 잘 봐야 합니다. 일단 교과서로부터 정적분은 곧 넓이와 직결된다는 개념을 알고 있습니다.
그렇다면 부등호 오른쪽의 식도 넓이로 이해해야 두 개의 비교가 되겠죠?
이렇게 교과서로부터 알 수 있는 개념으로 문제풀이의 키를 잡습니다.
따라서 수능식 해설은 이렇습니다.
이제 논리적 풀이를 위한 아이디어를 추출해냅시다.
일단 부등식을 정리해서 우변을 (b-a){f(a)+f(b)}/2 로 만들어 봅시다.
그럼 이 식은 사다리꼴 넓이를 뜻하게 되는데, 이 때 이 부등식이 성립할 수 있는 이유는
구간 (a,b)에서 (a,f(a)),(b,f(b))를 잇는 직선이 f(x)보다 항상 위에 있기 때문입니다.
이 사실을 증명하는 것이 포인트입니다.
이 아이디어를 잘 기억해놓고 다음 문제를 봅시다.
(10년 9월 평가원)
이또한 정적분과 관련된 식을 넓이로써 이해하고 그 둘을 비교하는 패턴의 문제입니다.
그래서 수능식 해설은 이러합니다.
그렇다면 증명하는 아이디어 또한 이와 동일하겠죠?
연습 차원에서 한 번 더 연습해봅시다.
이번 글을 통해서 함수의 볼록성을 다룰 때는 f'(x)가 증가/감소함수라는 사실을 이용할 수 있고,
직관적으로 푼 풀이에서 논리적인 이유를 분석한 후, 거기서 나오는 아이디어를 그대로 증명에 적용할 수 있다는 사실을 알 수 있습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진학사가 걍 개짠거겠죠? 지거국 다 3~4칸이던데 지사의도 비슷하고
-
쉬운문제를ㅋㅋㅋㅋㅋㅋ실수로잘못푼것도아니고 ㅋㅋㅋㅋㅋㅋㅋ 마킹을잘못햇다고? 진짜로?...
-
뭐 상관없겠지...
-
. 2
나 왤케 몬생겼지 ㅎㅎ
-
26수능 보는데 25수특 독서문학 풀어보는거 어케 생각하시나여 3
그냥 학교에서 내신으로 사래서 독서랑 문학 사긴했는데 한번도 안풀고 버리긴 좀...
-
이거 지금 제일친한친구의 제일친한친구가 (서로는모름) 작년여름에 자.살하기 전까지...
-
당시에 편집하다가 개빡세다 싶어서 걍 방치 → 1학기 좀 놀면서 방황 → 2학기...
-
슬슬 폼이 오르는게 체감되네요
-
연락 안하고 사는 성격이라 그런지 군대 오고나서 막상 휴가 나갈라니까 나가서 볼...
-
남캐일러 투척. 5
음 역시귀엽군
-
위생 문제 고양이가 쥐도 먹는데
-
아 하기싫다니까??? 하기 싫다고 이새끼야 하기 싫다고...
-
와 어지럽네 0
칸타타님이 올린 표봤는데 확통 백분위가 저렇게나오면 진짜 좆되는건데 진학사 확통도...
-
달아주시면
-
미리 매맞는중 0
고속에 미리 백분위랑 표점 낮춰서 넣음… 절망적인 수치를 먼저보는게 나을거 같다.....
-
ㅋㅋㅋㅋㅋㅋㅋㅋ 2
-
최저도 맞추고 내신도 될만한곳 여기 1개인데 10명뽑고 작년엔 26등 재작년은...
-
김과외 구경하고 있는데 어떤분 요청사항에 '잘하는ㄴ 구함' 이라고 되어있던데......
-
공통선택틀 질문 6
기하 공통4틀(-16) 선택 3틀(-11)인데 이런경우에도 동일 점수내에서도 유불리가 있을까요?
-
올해 유독 미적 의견이 안 맞는 거 같은데
-
이원준t의 고능아식 사고(인지과학, 논리학 기반)를 체화한 뒤 좀 더 쉽고 설명이...
-
멘탈 나가있음
-
물2 자작 (26-Long time no see, huh?) 2
-Hey.. Can't you smell that? -What? -That...
-
사생활 필름 끼고ㅋㅋ
-
진짜 한 손으로 세졌는데 근 몇년사이에 엄청 많아졌네.. 뭐 그냥 지인이니까 내...
-
믿습니다 0
(출처 -히든카이스 인스타) 기하 73점 3등급
-
미적 1컷 88이라고 가정했을 때 난이도 차이가 이렇게 심한데 8점차도 안나면 좀...
-
25 의대 모집정지/입학취소가 현실적으로 가능한거임? 0
수시도 이제 거의 끝나갈거고 정시나 수시가 각각의 영역에서 하는게 아니라 복합적인걸...
-
수능 기출의 미래 같은 ebs 교재 pdf 어디서 구할 수 있음?
-
지금 확통 2컷이 88일수도 있다길래.. 그럼 이 점수는 꼼짝없이 백분위...
-
현장에서 풀면서 9모급 난이도 느낌들길래 하나라도 틀리면 ㅈ 된다 생각들더라 집에...
-
김영일 농어촌 0
농어촌 지원이 되는데 김영일 얘네 표본+합격예측 믿을만 한가요?
-
한국에도 출시해다오
-
확통 1컷 96 0
가능함? 무섭네 진짜 시발 아 ㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠ
-
미적 1컷이 92라고 하신 내용 자체는 없고 내가 본 건 88점이 누백 6% 정도...
-
지리독학 0
쌍지독학가능함? 강의 따로 안듣고 걍 수특으로 개념정리하면서 공부할 생각인데 가능?
-
알려주세요!!
-
번따해본사람 27
어케해야대 타이밍 카페옆에 이쁜분이잇어 어떻게하면 번호를 뭐라고 말하고 물어봐야되지?
-
제가 타지역 지방에서 대학생활 할거같은데 긱사비 제외 식비 포함60이면...
-
개념의신은 이투스 월간 구독권 있어서 생선님 강의 들을수있음 28 or 29 수능...
-
오르비에 수시러 많지 않아서 공감하려는진 모르겠는데 특히 2등급대 계집애들이 더...
-
학점황님들 공부법좀 알려줘요잉
-
힠힠힠힠힠힠힠힠 3
힠하 히카!
-
안전지향 어떤데
-
칸타타님 표 보니까 진짜 확통은 23처럼 난도 올리든지 해야할듯
-
후배들 빨리 보고싶다
-
레전드기만 5
-
호에에 무서운것임뇨
-
출처 : 인스타그램 @hiddenkice 1컷 96 2컷 88 3컷 76
-
1호선.. 1
혹시 내일 1호선 파업하나요..? 외대 논술가야되는데 택시타면 늦을거 같은데ㅠㅠ
첫번째 댓글의 주인공이 되어보세요.