한완수 수2상편 질문드립니다
게시글 주소: https://app.orbi.kr/0003349739
헤비사이드로 항이4개곱해진건 어떻게해야하나요
한완수 수2상편 각각 28쪽2번 34쪽입니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
재수할라고 맘 먹었는데 다들 사탐런사탐런 거려서.. 현역때 6모 생지 각각 2, 5...
-
ㅈㄱㄴ... 장학금은 학기중에 들어오는 거 맞나요 그러면 만약에 당장 목돈이...
-
항상 드는 생각이지만 다이어트 시작하면 왜이렇게 귀신같이 유튜브 알고리즘이 먹방으로...
-
200명인줄 난 수능볼때까지 못달겠네
-
사탐 의대 0
정말 궁금해서 올려봅니다... 내년 2026 입시에서 사탐 의대 가능할거라고...
-
의대생들 입장에선 그게 또 아닌가 현직들한테 듣는 상황은 아직 그리 나쁘지는 않은거 같던데…흠
-
내가 번호 물어보면 다들 죄송합니다 이러는데 어떻게 감사합니다랑 죄송합니다를 뜻을 헷갈릴수가 있지
-
야식 추천 좀 5
야무진 걸로 비싸면 안 됨
-
보카로 듣는걸로 ㅈㄹ하는거 ㅈ같아서 걍 밖에서 jpop 듣고 다닐거임
-
떼잉 쯧
-
뭐 그렇지 않은 사람들도 있겠지만 대부분 1. 기업 CEO / 기업 대표 성공하고...
-
이명학 수능루틴 0
작년거랑 내용 다른가여?? 작년거 써도되나용
-
자극 개쩌네 삼반수각인가
-
과탐 수능 2등급 2등급 국어 3등급 (백분위80)로 마무리지을것 같습니다. 내년에...
-
언매 93 2등급 미적 80 3등급 ?????? 동시에 이럴 확률은????
-
졸리다 졸립다 8
뭐가 맞음
-
빨리 옷 추천해조
-
제발..
-
인증메타는 17
언제쯤 다시 열리나요 대기중 . . .
-
그딴건 없고 제 아내 보고 가세요
-
그래서 오르비언들 볼때마다 참기힘든것 일루와잇
-
강대 크럭스 사볼까 하는데 퀄 어떤가요?!
-
14 20 21 22 틀려서 84 나왔는데 뭐부터 해야 할까요 ㅠ 뉴런?
-
우웅 14
우웅
-
사문 1컷 1
사회문화 1등급 46일까 45일까
-
시즈카 화형식하면 보실분
-
문학/비문학 한문제씩 만든 문제 한번 풀어보실분 있나요 쪽지로 메일 남기시면...
-
건대 전과 쉽나여
-
지역인재로 의대 썼는데 보통 ㅈ반고 전교권들 대상이면 최저 충족률이 어떻게...
-
인류 역사상 최고의 날먹과목
-
2월군번 99점인데 영끌하면 제가 100점정도 될것같은데 진지하게 헌급방 가야하나
-
다들 폰 뭐쓰심 11
저는 아이폰14 일반 작년 3월부터 쓰고있고 26년 초쯤 조카 주고 17로 바꿀듯
-
21살이라 벌써 입시가 2년이나 지난 사람 vs 21살인데 아직 입시에 매여있는...
-
탈퇴 전 무물보 14
육군 군수 투자 (오늘자 시드 4.7억쯤 됨) 기타 등등
-
시험 공부에 찌든 대학생은 야식 먹고 밤샙니다…….. 11
Goat — 육개장 사발면…..
-
대충 라인 0
언미영물1지1 84/81/2/37/42 어느 정도 생각하는 게 좋을까요? 낙지는...
-
오
-
중학교 때 공부를 잘 하는 줄 알았습니다. 과고를 준비했었고 의대(...)에...
-
정시 컨설팅 0
정시 컨설팅 적당한 가격에 유명한 곳 어디인가요?
-
곱셈공식...
-
후자는 연대/경희대/숭실대 디플 걍 노답임 LCD는중국한테 밀린지 오래고 OLED...
-
99일것같긴한데 101점 다수에 헌급방 99가 개많을것같음 그리고...
-
저볼펜 어때요??
-
건대 부산대 8
부산 거주 중이고 부산대 하위 공대에서 1학년 마치고 군대에서 사탐으로 수능쳐서...
-
저 핑크 형광펜 친부분이 이해가 안가요ㅠㅠ 제가 이해한 내용 동일성사고...
-
나는야 바나나킥 중독자ㅏ~~
-
대학 졸업 후 취업을 중요시 여기고 있습니다.
1. 1 / (n(n+1)(n+2)(n+3)) = (1/3) {n+3 - 3} / (n(n+1)(n+2)(n+3)) = (1/3) { 1/(n(n+1)(n+2)) - 1/((n+1)(n+2)(n+3))} 이므로, 더하면 첫항 (1/3) (1/(1*2*3)) = 1/18 만 남고 다 상쇄. (뒷쪽 항들의 극한은 0으로 가므로 논리적 모순 없음.)
헤비사이드로 하려면 1/(n(n+1)(n+2)(n+3)) = a/n + b/(n+1) + c/(n+2) + d/(n+3) 이 n에 대한 항등식이라 두고 상수a,b,c,d구하시면 됩니다. (a,b,c,d각각 1/6 , -1/2, 1/2, -1/6)
쭉 다 더하면 1/4 , 1/5 , ... 등등은 쫙 다 상쇄되고, 1 , 1/2 , 1/3 에 적당한 계수(a,b,c,d 등) 곱한 것들만 몇 개 남아서 더해보면 됩니다.
2. 1/ (x(x+1)^3 ) = a/x + b/(x+1) + c/(x+1)^2 + d/(x+1)^3 이 x에 대한 항등식이라 두고 상수a,b,c,d,구하시면 됩니다. (양변에 x(x+1)^3 곱하고 전개..)
(a,b,c,d 구하시는 약간 더 간단할 수도(?) 있는 방식은 1/(x(x+1)^3 ) = 1/(x(x+1)^2 ) - 1/(x+1)^3 으로 분해하시고 이 중 앞 항은 다시 1/(x(x+1)^2 ) = 1/(x(x+1)) - 1/((x+1)^2 ) = 1/x - 1/(x+1) - 1/(x(x+1)^2 ) 처럼 하는 겁니다. 그러면 답은 1/x - 1/(x+1) - 1/(x+1)^2 - 1/(x+1)^3 . )
ㄴ. 이 문제는 참이 아닙니다. (동치 아님.) 편의상 알파=a, 베타=b라 둡시다.
좌 <=> 우 에서, 좌 <= 우 방향 증명은 자명. (양변에 (x-a)^2010 |x-b| 곱하면 되는데 이는 0이상인 수이므로..)
좌 => 우 방향은,
x=a,b가 아닐 때, (x-a)^2010 |x-b| (양수)로 양변 나누면 원하는 부등식 (x-a) f(x) >= 0 얻음.
x=a일 때, 좌측 우측 부등식 모두 0=0 으로 참이므로 성립.
x=b일 때, 좌측 부등식 0=0으로 성립하나, 우측 부등식은 (b-a)f(b) >=0 로 f(b)의 부호에 따라 참, 거짓 모두 가능.
주. 만약 f가 연속함수라는 조건이 있으면 참.