[자작] 넓이가 일정할 때, 부피의 최댓값 문제
게시글 주소: https://app.orbi.kr/0003262870
예전에 이와 비슷한 문제를 푼 기억이 나는데 되짚어보니 잘 생각이 안나서 자작으로 하나 만들어 보았습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
공통선탹에서 하나씩 나감ㅠ
-
전시즌 플레계정인데 랜만에 켜서 한판해서 첫판 이겼더니 실버 4를 주네
-
벌써 2028 수능 준비하는 사람 있음? 아는 08 지금 자퇴하고 2028 수능 준비하는데
-
이번 겨울부터 시대 라이브반 수강하려고하는데 언제쯤 개강하나요??
-
나도 그때까진 생지가 무슨 이과냐고 생각하면서 이과가 물화중 하나도 안 하는게...
-
방금 라면먹고 3
식은 밥말아먹는 중인데 살안찌겠죠? 오늘 아침안먹었고 점심 저녁만먹음 점심엔 떡볶이...
-
행렬 공간벡터 모비율의 추정 롤백시킨건 근본스러운데 1
행렬은 공통수학1에 있어서 간접 연계로 들어가는데 수학적 귀류법이나 순열처럼...
-
언 미 영 물1 지1 동대나 홍익대 공대는 가능할까요...?
-
지각안할라면넉넉히 6시50엔 일어나야하는데 ㅅㅂ오늘 ㅈㄴ쳐잣더니 잠안옴..ㅈ댬
-
기숙학원재수는 1년6개월동안 공부해야하고 기간동안 수능을 볼 수 없으며...
-
위치 신경안쓰고 학교 지원이나 아웃풋 측면에서만 ㅇㅇ 입시 커뮤 말고는 어떤 기준으로 알아봐야됨?
-
ㅏ 드디어 1
올 한해를 알차게 보내기 위한 인강 커리 N제들 계획을 다 세웠다 이대로만...
-
세종대 논술 0
보통 수학 몇등급대가 오나여? 미적 안한 기하러 합격 가능세계잇음?
-
07들에게 힘의 차이를 보여주기 위해
-
.
-
이새끼들 안죽냐 변기물로 익사시킴
-
긴장되네요.. 0
인생이 바뀌는 시험이라 그런지
-
올인원, 단어, 유형독해만 듣고 빈순삽은 교재없이 강의만 들어도 되나요? 목표는 2등급 이상입니다.
-
ㅈㄱㄴ 실모에요 N제에요?
-
이번에 보니까 호텔관광이랑 묶어서 계열로 뽑던데 2학기끝나고 전공 선택할때...
-
음..
-
의치한은 진짜 그런가요
-
계정은 남겨 두겠음
-
우울글 3
(반말주의) 사실 나는 의대가 너무 가고싶었다. 아니, 의사가 되고 싶었다는 말이...
-
은 없나여?
-
예비 고3인데 이 시점에 수 상하 복습해도 괨찮을까요… 4
초딩 때 수 상하 배우고 성적 개판 치다가 올해 시대 스파르타 다니면서...
-
고2까지 공부 던지고 펑@펑 놀기 고3때 공부 시작해서 재종 들어갈 성적 띄우기...
-
그냥 접겠다..
-
공통수학 (22개정) 공부 통합사회 (22개정) 공부 독서 심슨 정주행
-
자라. 4
3시 전에 자야지
-
이건 팩트인듯요
-
가천대 명지대 경기대중 셋다 붙을수있다고 가정하에 어디가 가장 괜찮을까요??
-
차 많이 막히려나 가기 존나 귀찮네 ㅅㅂ
-
인생이힘들다..... 나데나데나데나데나데나데해줄미소녀한테 어리광 부리고 싶다
-
얼버기 4
9시에 잠들었는데 지금 일남 ㅅㅂ 4시엔 다시 자야지
-
이훈식 오지훈
-
오지훈 개념완성 스텝1까지만 개념기출하고 이신혁쌤 현강 들어가도되나요? 0
스텝2 까지 꼭 수강하고 기출 풀어야 이신혁쌤 따라갈수 있을까요?
-
보고싶다 1
같이 살고 싶어 언젠가는 같이 살겠지
-
군대에서 하려고 하는데 ㄱㅊ음?? 근데 본인 4대역학 개못함 ㅋㅋ 재수강해야 함.....
-
9칸 1
이시점 라인 의미 없다는데 그래도 9칸이면 붙겠죠? 가고 싶어서 모의면접도 가고...
-
일본 애니에는 감동이 있다 가슴이 웅장해진다 진짜
-
10퍼에서 3분만에 2퍼됨
-
ㅂㅂㅇ 4
-
한달만에 완강 ㄱㄴ?
-
아직도 이해가 안된다 20
안읽씹의 심리
-
다들 그럼 뭐하는건지 쓰고나가셈
-
댓글 등의 반응은 현저히 줄어드는데 조회수는 개빨리 늘어남 ㅋㅋㅋㅋ 뭔가 있는 듯
-
중기:이거 불법입니다!
전 절편a b c 두고 원점포함한 직각삼각형 넓이들 3개의 넓이 각각 제곱합 = 3^2
하고 요식 산술기하로 넘겨서 풀었어요
답은 펜없이는 못구하겟네용ㅋㅋ
오우, 상당하세요.... 그렇게 풀어도 되겠군요.ㅎㅎ
저는 코시슈바르츠로풀엇더니 3나왔네요
확신은못해요 ㅋㅋㅋ
네. 3이 맞습니다. 저도 코시-슈바르츠로 풀었는데.... 혹시 다른 풀이를 해주실 분이 없나 기다리는 중입니다. ^^
54인가요
아니요. 3이 맞는 답 같습니다만.....^^;; 아... 다시 한 번 계산해봐야겠어요. 왠지 아닐듯도 싶네요.ㅠㅠ
음.... 아무래도 답이 3이 아니겠네요. 이미 O와 P를 맞모금으로 하는 직육면체의 부피가 4가 나와버리네요.ㅠㅠ 어디서 틀렸지??? ㅠㅠ
저도 코시로풀었는데 54틀린듯ㅋㅋ 근데 이거 코시등호성립조건쓰면 점은 안포함하게되던데
아.... 문제에서 주어진 삼각형의 넓이를 너무 작게 주었군요.ㅠㅠ 그러다보니 삼각형 ABC가 주어진 그림처럼이 아닌 예를들면 z절편이 (-)값이 나오게끔 그려지고 그러다보니 결과가 이리 나온것 같네요. ^^; 문제를 다시 출제해야겠어요. 그것을 감안하고 생각해서 굳이 답을 내면 3이 맞습니다. ^^
문제 수정했습니다. ^^ 삼각형 ABC의 넓이를 3에서 12로 바꾸었습니다.
근데 이게 애초에 코시로푸는게아닌것같아요
뭐 방법은 여러가지가 있을듯하네요. 미분도 가능할 것 같고... 벡터.... 삼각함수...... 코시도 안될것 같지는 않은데요??
코시로하면답나오나요 ? 전자꾸 등호성립조건에서걸리네요.. 풀이과정보여주실수있나요?