2월 20일(월)
게시글 주소: https://app.orbi.kr/0002791192
*단원: 기벡 공간도형, 평면의 방정식(이과 전용)
*예상정답률: 30%
*정답은 비밀글로 부탁드립니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아니 ㅆㅂ 5
왜 나는 햄볶할수 없는가 아래는 생일 미즈키 에나 그리고... 누구지 모모점애같은데
-
1등급 성적표 제출하고 들어가는거던데 주는 자료랑 커리가 좀 다른가요?? 다르다면...
-
자살
-
저는 수열이랑 수2 접선활용쪽 수열은 그냥 극혐하는 유전자가 있는거같고 수2접선쪽...
-
매승부터 벌써 기대되네
-
언제마니싸우는거야 대체 ㅠ
-
2024년 도쿄대 본고사 물리 문제입니다.평소보다 쉽게 나온 편이라고 합니다. 물론...
-
라섹 무섭다.. 15
ㅠㅡㅠ
-
공부하기 싫어요 1
그래도 해야지, 너가 수험생인데
-
상경계열 희망하긴 하는데 국어를 망해버려서.. 국어 반영비 낮은 곳 중에서 어디까지 갈수 있을까요?
-
오르비 마크.. 4
진짜 있구나
-
쪽지로 달래줬는데 이새끼들이 이제 안봄
-
응시확인서 뽑을 수 있나요?
-
하 송하영 3
ㅠㅠ
-
군통령이 사라졌다…나의 군생활의 한줄기의 빛이었는데
-
궁금해
-
삼성전자 역대급 위기에 직면하며 어려움을 겪고 있음롯데그룹 심각한 위기로 인해...
-
3덮76점이였네 2
옛날기록보던중에 발견 많이 못했었구나 실수도 많이 했지만 그게 실력이니까 찍맞도 있었던걸로 기억함
-
고3 연애 26
고3때 연애 어떻게 생각하시나요 최근 한 여자와 알수 없는 기류가 흐르고있는데
-
경희치말고 어디 써야 될 지 모르겠습니다..
-
인하대 논술 0
인하대 수리논술에서 중요한 부분이 어디일까요...
-
왜케 다군에 쓸 곳이 많아졌어요
-
너무 운이 좌우하는 전형이라 혼자서는 힘들거같아서 컨설팅 받으려하는데 혹시 작년에...
-
대학교 고등학교 중학교 상관없어요! 예시: 학교가 홍대랑 가까워서 놀거리랑 맛집...
-
재밌다 모두 한 판씩 ㄱㄱ
-
당첨은 제가 됐네요
-
마음이아프네 1
영화나봐야지 인생쓰다
-
한완수 피램 마닳 렛츠고
-
여자끼리 빡치면 막 여자끼리도 씨발년이 하면서 주먹으로 때림?
-
취업했다 2
그래도 공대는 가지마라
-
눈밭에서 뒹굴고 싶어 12
롱패딩입고눈에덮힌풀밭에서 뒹굴고싶어 차갑지만따뜻할거같아
-
그림속에 영원히 존재함 ㄹㅈㄷ ㅇㅈ?
-
오 드뎌 13
10일 목 빠지는 줄 알았네
-
물1컷 48 0
이라면 내년 입시에도 물1선택하는 사람들을 존경할수 있다 진심이다 이거는
-
너무 애매하네 성대는 탐구 하나만 봐서 손해보는 기분인데
-
실력이 워낙 부족해서 남들보다 조금 빠르게 12월부터 독재에서 공부 다시 시작하려고...
-
26수능 준비중이고 인강으로 개념돌리고 있는데 개념 익히거 유형연습할 문제집 추천부탁드려요!!
-
붕어빵 아저씨 호떡 아저씨 타코야끼 아저씨 오 나의 사랑 남자들이여 왜 내 주위에는 없는가..
-
삼수해도 될까요 3
고3까지 공부를 제대로 한 적이 한번도 없어 현역 26655가 나왔었습니다 공부는...
-
왜 패스파인더에는 스텝 2에 박혀있냐 그냥 가형2130보다는 쉽다는 뜻인가보네 엄
-
비상비상비상 10
납치 선언 당했는데 신변보호 요청해야되는 건가요?
-
나 ㄹㅇ 뭐하는놈이지
-
티비로 챔스보다 잠들고 그랬는데 스포티비 끊을 돈이 없네 궁핍하군
-
가격 보고 포기했네요,, 다른 피자 먹을래요,,
-
D-349 공부 5
-
강민철T, 이원준T, 김동욱T, 김상훈T 중 들어보고싶습니다. 이유도 함께 남거주세요.
-
대충 수학 1문제차이?중경외시 건동홍라인이요
-
익스플로젼! 9
-
수학,쌍지만 들을건디. . . 현우진,이기상밖에. . . .
혹시 9 - 4*(루트2)인가여?
아닙니다ㅜ 자연수가 나올겁니다...
혹시 18인가여? ㅠㅠ
네 맞아요ㅎㅎ
근데 첫번째 풀이에서 제 생각이
평면과 원기둥이 만나는 한점이
좌표계를 도입하면 (0,1,h)인데
그걸 평면의 방정식에 대입하면
h가 2*(루트2)-1이 나오던데요..
제 풀이 어디가 틀렸던거였는지좀 알려주세요~
음... x+y+z=2루트2와 원기둥이 만나는 점의 자취는 타원인데;;;
아마 C가 아닌 원기둥의 밑면과 평면 x+y+z=2루트2가 만나는 한 점의 좌표를 말씀하신 듯 합니다
그 점의 좌표를 (0,1,h)로 놓으셨는데 문제에서 조건들에 의해 x,y좌표는 이미 정해져있는것입니다
임의로 x=0, y=1로 놓으시면 안됩니다
한 편, C의 중심과 C '의 중심 사이의 거리는 x+y+z=2루트2에 x=0, y=0을 대입하면 z=2루트2가 나오는데
높이는 그것보다는 커야하므로 결과적으로 보아도 2루트2-1을 나오도록 하는,
C가 아닌 원기둥의 밑면과 평면 x+y+z=2루트2가 만나는 한 점은 (0, 1, h)로 놓을 수 없을 것입니다
18인가요?
정답입니다ㅎㅎ
18나왔어요 원기둥윗면이랑 저 방정식이랑 만나는 각도를구해서 닮음사용해서 높이구하니까 3루트2가나오더라구요 이렇게하는게맞나? ㅠ 기벡이기억이잘안나네여
네ㅎㅎ 그렇게 푸시는거 맞아요ㅎㅎ 정답ㅎㅎ
18요 ㅋㅋ x^2 + y^2 = 1과 z = 2루트2 -(x+y)에서 코시슈바르츠로 x+y의 최소값 찾아서 풀었네요 혹은 직선 x + y =2루트2에서 원점까지의 거리가 2이므로 거기에 반지름1 더하면 3, 여기서 두평면사이의 각도를 t라하면 tant = h/3인데 cost = 1/루트3이라서 tant = 루트2, 즉 h = 3루트2 이런식으로도 접근 가능하네요 ㅋㅋ
정답입니다ㅎㅎ 제가 만들었는데도 코시슈바르츠는 생각도 못했네요 발상이ㄷㄷ
18?
네 정답ㅎㅎ
8인가요?
아닙니다ㅜ
1 8 ?! ㅠ
정답ㅋㅋ
32인가요? 으아 틀린것같다ㅠㅠㅠ
오답입니다ㅜ
풀이를 알 수 있을까요? ㅠㅠ
우선 C의 중심과 C '의 중심 사이의 거리는 x+y+z=2루트2에 x=0, y=0을 대입하면 z=2루트2가 나옵니다
여기에 C'의 정사영이 C라는 사실을 이용하기 위하여, 두 평면 x+y+z=2루트2와 z=0가 이루는 각에 대한 코사인 값을 구해보면
루트3분의 1이 나옵니다. 이 두 가지를 이용해서 그 다음부터는 답을 구하실 수 있을 것 같네요...
18?? 또 틀린것 같긴 하지만 ㅠ
우왕 여기는 진짜 어려운듯..
이 문제들은 심심해서 만드시는거에여?ㄷㄷ
정답 18 맞아요ㅎㅎ
수학문제 만드는거는 취미라서 하고 있습니다ㅎㅎ
18 맞나요?
정답입니다ㅎㅎ
이거 어떻게 푸는게 정석인가요?
평면사이각 구하고, (0,0,0)하고 x+y+z=2루트2 거리구해서.. 코시컨트 탄젠트때려서 높이 구했는데요
쫌 이상하게 푼거같아서..
네 그렇게 푸는걸 의도한거 맞아요ㅎㅎ
법선벡터가 (1,1,1)이라
타원의 장축을 품는 직선이 점 A(2루트2/3,2루트2/3,2루트2/3)를 지나고, 선분 OA에 수직이며, 정사영내릴시 원 C의 지름을 포함하는 직선 l을 잡으니, 그 직선이 (0,0,2루트2)를 지난도록 계산되더라구여.
이때 장축의 양끝의 x, y 좌표는
(1/루트2, 1/루트2), (-1/루트2,-1/루트2) 로 추정되어 h^2=18이 나왔는데,
풀이와 정답은 어떻게 되나여??
ㅎㄷㄷ 좌표를 직접 구하셨네요 정답 18맞구요...
제가 의도한 풀이는 우선 C의 중심과 C '의 중심 사이의 거리는 x+y+z=2루트2에 x=0, y=0을 대입하면 z=2루트2가 나옵니다
여기에 C'의 정사영이 C라는 사실을 이용하기 위하여, 두 평면 x+y+z=2루트2와 z=0가 이루는 각에 대한 코사인 값을 구해보면
루트3분의 1이 나옵니다. 이 두 가지를 이용하면 역시 3루트2가 나오구요...
32인가요/
아닙니다ㅜ
18 ~
정답ㅋㅋ
18
정답ㅊㅊ
혹시 18인가여??
네 정답ㅋㅋ
18?
정답이에요ㅋㅋ
18 아닙니까??
정답입니다ㅋㅋ
아무리 머리 굴려도 못풀겟는데.. 풀이나 힌트 없나요? 평면의 방정식에 2루트2가 힌트?
제가 의도한 풀이는 우선 C의 중심과 C '의 중심 사이의 거리는 x+y+z=2루트2에 x=0, y=0을 대입하면 z=2루트2가 나옵니다
여기에 C'의 정사영이 C라는 사실을 이용하기 위하여, 두 평면 x+y+z=2루트2와 z=0가 이루는 각에 대한 코사인 값을 구해보면
루트3분의 1이 나옵니다. 이 두 가지를 이용하면 답을 찾으실 수 있을 것 같아요!
아 18인가요? ㅋㅋ 아 ... 피타고라스 이용해서 원기둥 높이의 일부분이 2루트2인것까지만 생각햇네요 ㄷㄷ
네 맞히셨어요ㅋㅋ
이런거 자작하시는 건지 아니면 어디서 갖고오나요? 자작하시는 거라면 문제 정말 잘만드시네요...
아 그리고 C의 중심을 0,0,0으로 잡으면 C의 오른쪽 점을 0,1,0으로 잡고하면 원기둥의 높이가 2루트2-1 나오던데...
이건 뭐죠 ㄷㄷ
감사합니다ㅎㅎ 직접 만드는거에요ㅎㅎ 보통 기출문제를 참고하여 그를 분석하면 풀 수 있도록 가공하구요
소재는 가끔 교과서에서 따와서 제 입맛에 맞게 원본과 전혀 다른 문제로 만들 때도 있는데
이 문제가 그에 해당합니다... 원기둥을 평면으로 자른다는 설정만 가져와서 제가 만들고 싶은 문제를 만든것이구요...
그리고 좌표를 설정하는 부분도 위에서 한 분이 질문하셨습니다
C가 아닌 원기둥의 밑면과 평면 x+y+z=2루트2가 만나는 점의 좌표를 (0,1,h)로 놓으신 셈인데,
문제에서 조건들에 의해 x,y좌표는 이미 정해져있는것입니다
임의로 x=0, y=1로 놓으시면 안됩니다
음... (-2분의루트2, -2분의루트2, h)평면에 대입하면 되는거 맞죠?/ 그러면 18인가??
아하... 좌표를 직접 구하셨네요 중간에 그렇게 푸신 분도 계셨고 답도 맞습니다ㅎㅎ
가장 많은 분들이 풀이하신 방법은
우선 C의 중심과 C '의 중심 사이의 거리는 x+y+z=2루트2에 x=0, y=0을 대입하면 z=2루트2가 나옵니다
여기에 C'의 정사영이 C라는 사실을 이용하기 위하여, 두 평면 x+y+z=2루트2와 z=0가 이루는 각에 대한 코사인 값을 구해보면
루트3분의 1이 나오면서 높이를 삼각비를 이용하여 구하면 2루트2+루트2가 되면서 3루트2를 구할 수 있습니다
아 ㅋㅋ 그런방법은 생각도 못했느데 ㅎㅎ
답 32 맞나요? 맞다면 의도하신 풀이는 뭔가요?
아닙니다ㅜㅜ
아 ㅋㅋ (-루트2,-루트2,~)점이 아니라 (-2분의 루트2,-2분의 루트2,~)점에서 만나는 거네요. 수능 끝났다고 계산실수해되네.. 답 18맞나요? 아니면 당황스러운데...
정답 맞아요ㅎㅎ 님 바로 위에 분도 좌표 설정하시고 푸셔서 맞히셨어요ㅎㅎ
제가 의도했던 풀이는
우선 C의 중심과 C '의 중심 사이의 거리는 x+y+z=2루트2에 x=0, y=0을 대입하면 z=2루트2가 나옵니다
여기에 C'의 정사영이 C라는 사실을 이용하기 위하여, 두 평면 x+y+z=2루트2와 z=0가 이루는 각에 대한 코사인 값을 구해보면
루트3분의 1이 나오면서 높이를 삼각비를 이용하여 구하면 2루트2+루트2가 되면서 3루트2를 구할 수 있습니다
흠냐 그런 풀이도 있군요 ㅎㅎ 재밌네요 문제 제공 감사드려요~~ 그럼 안녕히 주무시길 ㅎㅎ
8
18인가요??...ㅠ 오늘인기글에올라와있길러 처음뵙니닿ㅎ
18
답: 열여덟 아닌가요?? 답은 어디있나요?