[이동훈 기출] 수능 실전이론 2019
게시글 주소: https://app.orbi.kr/00017275506
실물책자 출간으로 인하여 PDF 파일을 삭제합니다.
2019 이동훈 기출 atom 책페이지
안녕하세요~
이동훈 기출문제집의 저자 이동훈입니다. :)
이동훈 기출문제집 2019의 부교재(PDF)인
수능 실전 이론편 (42개의 주제)를
6월 모평 대비 자료로 올려드립니다.
수능 실전 이론편은
(1) 교과서의 개념으로 증명+추론 가능한
(2) 역대 수능/모평에서 중요하게 다루는 실전 이론(문제풀이 도구)를 정리한 문서입니다.
예를 들어, 기벡의 공도회, 미적분1+2의 변곡접선, ... 등의 주제들을 다루고 있습니다.
6월 모평에서도 좋은 결과를 얻으시길 기대합니다.
감사합니다 !
이동훈
-------------- 수능 실전 이론편 (42개의 주제) --------------
(01) 수학2(함수) 유리함수, 무리함수와 격자점
(02) 수학2(수열) 등차등비수열의 전형적인 문제 (+등차중앙, 등비중앙)
(03) 수학2(수열) 합에서 일반항 유도하기
(04) 수학2(수열) 수학적 귀납법으로 증명하기
(05) 수학2(수열) 발견적 추론 (수를 나열한다.)
(06) 미적분1(수열의 극한) 수열의 극한과 급수의 계산
(07) 미적분1(수열의 극한) 등비급수와 중등기하
(08) 미적분1(함수의 극한과 연속) 함수의 연속에 대한 전형적인 응용문제
(09) 미적분1(함수의 극한과 연속) 사이값 정리의 활용
(10) 미적분1(다항함수의 미분법) 미분계수와 도함수의 다양한 문제들
(11) 미적분1(다항함수의 미분법) 접선의 방정식 (+최단거리)
(12) 미적분1(다항함수의 미분법) 평균값 정리의 활용
(13) 미적분1(다항함수의 미분법) 3차, 4차 함수의 그래프 (+인수정리)
(14) 미적분1(다항함수의 미분법) 미분가능성 (+절댓값)
(15) 미적분1(다항함수의 미분법) 미분법의 방정식, 부등식에의 활용 (문과)
(16) 미적분1(다항함수의 적분법) 구분구적법을 정적분으로
(17) 미적분1(다항함수의 적분법) 적분과 미분의관계, 미적분의 기본정리에 대한 전형적인 응용문제
(18) 미적분2(지수함수와 로그함수) 지수로그함수의 수학1 내적 연관
(19) 미적분2(지수함수와 로그함수) 삼각함수의 수학1 내적 연관
(20) 미적분2(삼각함수) 삼각함수, 지수로그함수의 극한과 중등기하
(21) 미적분2(미분법) 역함수의 미분법 총정리
(22) 미적분2(미분법) 사이값 정리, 평균값 정리의 활용
(23) 미적분2(미분법) 합성함수의 연속성과 미분가능성
(24) 미적분2(미분법) 접선의 방정식 (+변곡점, 점근선의 관점)
(25) 미적분2(미분법) 초월함수 그래프 (+빠르게 그리는 방법)
(26) 미적분2(미분법) 이계도함수에 대하여 (+함수의 볼록성)
(27) 미적분2(미분법) 미분법의 방정식, 부등식에의 활용 (이과)
(28) 미적분2(적분법) 치환적분법, 부분적분법의 전형적인 응용문제
(29) 확률과 통계(순열과 조합) 합의법칙, 곱의법칙 (+수형도)
(30) 확률과 통계(순열과 조합) 조합, 중복조합, 순열, 중복순열에 대하여
(31) 확률과 통계(확률) 확률의 계산 (+밴다이어그램)
(32) 확률과 통계(확률) 확률의 전형적인 응용문제 (+개념정립)
(33) 기하와 벡터(이차곡선) 이차곡선의 정의와 중등기하
(34) 기하와 벡터(이차곡선) 교과서에는 없는 이차곡선의 성질
(35) 기하와 벡터(평면벡터) 벡터의 일차결합 (+개념정립)
(36) 기하와 벡터(평면벡터) 벡터 내적의 최대최소 (+상수변수)
(37) 기하와 벡터(공간도형) 공간도형을 관찰하는 법 (단면화, 정사영, 전개도)
(38) 기하와 벡터(공간도형) 공간도형 개념정립
(39) 기하와 벡터(공간벡터) 좌표공간 개념정립
(40) 기하와 벡터(공간벡터) 공간에서의 직선, 평면, 구의 방정식 (+위치관계)
(41) 기하와 벡터(공간벡터) 두 평면이 이루는 각의 크기를 구하는 3가지의 방법
(42) 기하와 벡터(공간벡터) 한 평면에 포함되는 3개의 공간벡터에 관하여
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
어제수익일부를오르비언들에게 맛있게드세요 맛점~
-
언매 71/24 확통 74/26 영어 2 한국사 2 생윤 39 사문 45
-
3판 다 완패해서 우러써
-
발뻗잠 가능인가?? 서강대임
-
나 그럼 오늘 알바가야되는데 으아아아
-
시간 더럽게 안 간다
-
외우는거는 못 하는데 오르비언들 흑역사같은거는 잘 기억함
-
?
-
물2는 첫 경험이라 너무 무서워요 ㅠㅠㅠㅠㅠㅠ
-
글쓰려다 17
특정 위험 생길거같아서 사렸어요
-
가슴 졸이고 계실 이공계 수험생 분들께는 이기적으로 들리시겠지만... 연대 논술...
-
어서와요 현역의늪
-
진짜 찐으로 병신인가....
-
사실 며칠 전부터다
-
이거어떡해하냐 6
혼자할수있는거맞냐
-
지금 국숭세단 안정~ 적정에 숙대 적정~소신 라인인데 삼반수 고민 중이거든여 근데...
-
그냥 지랄하는중
-
2026 이동훈 기출 https://atom.ac/books/12829 안녕하세요....
-
뀨뀨 8
뀨우
-
ㅜㅜ
-
고양이... 같다고 해야 되나 평소에 안 그러던 사람이 따수운 말 한 마디 해주면...
-
아는 사람 뜨는게 신기하다
-
저도 사실 은테 5
금테 달고 싶어서 달았어요 ㅜㅜㅜ
-
본캠인척 하는 애들없을거같지만 현실에서 개많음 인스타에서 절대 분캠인척안보일라고...
-
죽어
-
ㅈㅅ
-
내 예상엔 2030~2035 사이에 인기가 상승하지 않을까 싶음
-
오늘 목표는 6시간
-
.
-
잘생기고 예쁜 애들 ㅈㄴ 많네.. 이게 나의 마지막 보루인데..
-
덕코는 6
도당체가 어따쓰는거임? 이걸로 편의점 결제 된다는 거 ㄹㅇ이에요?
-
어느캠퍼스냐고 물어봤을때 얼버무리는 사람임 얘네는 이미 본캠에 자아의탁해서 더이상의...
-
나는 성대가 싫어요 11
구조가 너무 어려워요
-
저도 사실 설뱃 4
분캠으로얻음...
-
언제 하실 예정인가요?? 전 3떨할까봐 언제 할지 모르겠네요
-
물2로 가면되는구나!!
-
경주캠으로 단거에요.. 그랬다면 얼마나 좋았을까
-
개맛있음
-
이게 올수 화1 지1 50 47이고 지1은 4번 틀렷는데 만약 삼반수를 하게 된다면...
-
국문과를 다니게되면 온갖 고전문학을 공부하고 현대문학 교육 그런것들을 배우게되는데...
-
왜 아직까지도 있는거야
-
점심 ㅇㅈ 8
맛점하세요
-
인스타에 한양대 태그해놓고 어디다니냐고 물어보면 한양대 다닌다하고 냥대축제가서...
-
자 포경하라 그 대
-
사탐 군침 싹도네 하아
-
종강을 바란다
-
정렬부인화 된듯
-
배경지식으로3 분컷 할수있음? 개씹황 독해력에다가 서울대 경제학과박사 졸업, 도쿄대...
-
여캐 일러 투척 7
카와이
-
별로 안 친한데 인스타만 맞팔인 친구가 있음 걔가 수시 발표나고 고려대 합격했다길래...
이륙
경찰 사관 교육청 n제는 언제 나오나요??
2019 이동훈 기출 교육청/사관/경찰 은 6월 10일 전후에 출시 하기 위하여 노력중입니다. 감사합니다. :)
부끄럽습니다. ^^;
감사합니다
올해 수능에서 좋은 결과 있기를 기원하겠습니다~~ ^^
선생님 기출문제집 정말 잘풀고있어요 2번3번.. 선별해서 역대기출 편집해서 책펴내주신거 다시한번 감사드려요
제 책을 선택해 주셔서 감사드립니다 ~! 올해 수능에서도 좋은 결과 있으시길~ ^^
좋아요!
선생님 기출 푸는데 미2 풀이과정 많은거 너무 좋아요 ㅠㅠ 근데 확통은 넘나 풀기 싫은것...
이 통합본 카페에도 올려주시나요??
카페에 통합본을 따로 업로드하겠습니다. 감사합니다~ ^^
감사합니다~~ ^^
선생님 세과목 다 선생님 문제집쓰는데, 요새 흐름과 안맞는(잘 안나오는) 올드한 어려운 문제는 가볍게 확인만하고 넘어가도 괜찮을까요?? 빨리 1회독 하고싶어서요 ㅜ 문과입니다!
또 작년과 올해꺼 차이가 무엇인가요? 어떤건 작년, 어떤건 올해것을 가지고 있습니다
2018 버전이 전반적으로 문항 선정에서 좋지 않은 평가가 있었어서, 2019 버전에서는 반응이 좋지 않았던 문제들(제가 실수로 넣은 문제들도 있었지요.)을 모두 삭제하였습니다. 풀이도 시험장에서의 실전풀이 위주로 - 약 200 문항 이상 - 새로운 풀이가 대거 수록되었습니다. 가능하면 2018보다는 2019버전으로 공부하실 것을 권합니다. (2018에서 제외해야 하는 문제는 제 네이버 카페에 목록을 올려두었으니, 참고하세요.) ^^
우선 제 책을 선택해주셔서 감사드립니다. :)
수험생 커뮤니티를 모니터링 한 결과, 수학2의 일부 단원을 제외하면, 문항 선정에는 큰 컴플레인은 없어 보입니다. 수학2의 집합명제, 함수 단원에서 90년대, 00년대 문제들은 우선순위를 뒤로 미루셔도 좋을 것으로 생각합니다. (그 외의 과목에서도 올드한 느낌이 있는 문제들 역시 우선순위를 뒤로 미루셔도 됩니다.) 하지만 가능하면 나중에라도 푸는 것을 권합니다. 예를 들어 작년 나형 21번 함수 문제의 경우에는 90년대, 00년대 기출문제가 결합된 것이였어서, 예전의 문제들 중에서도 현행 교육과정상 풀수 있는 문제라면 가능하면 풀어주는 편이 낫습니다. 감사합니다~~ :)
자료 미쵸따...
학습에 도움이 되길 ... :)