[박재우] 다음 글 올린다는 것이 좀 늦었습니다.
게시글 주소: https://app.orbi.kr/00016982239
안녕하세요.
오르비 수학 클래스 수학 강사 박재우입니다.
다음 글을 올린다는 것이 시간이 좀 늦었네요
어떻게 6월 준비는 잘 되어 가시나요 ?
6월은 많은 변화가 있는 달입니다.
가족끼리 특히 부모님과의 관계 변화가 심각하게
나타나는 달이죠. ^^
이겨 내야 합니다.
만약 원하는 바의 점수가 나오지 않는 다면
.
.
.
.
100점 맞은 사람 없냐 ?
물론 있지
근데 넌 왜 못 맞냐 ?
어려웠다니까 ?
그러니까 100점 맞은 사람도 있잖아
.
.
.
.
.
무한 루프가 발생할 수도 있습니다.
수능에 그다지 영향을 주는 것도 아니지만
마음적으로 편하지 못한 시험인 것은 확실합니다.
자존감 꼭 갖고 화이팅 하길 바랍니다.
이제 저도 늦은 강의 어느 정도 중요한 것은 끝나가니까
나머지도 열심히 찍어서 완료해 놓겠습니다.
체력이 바닥이 되네요.
진짜 죽을 거 같습니다.
인강 보시면 날로 늙어가는 제 모습을 볼 수 있을겁니다. ㅋ
이제 Kinetic 과정이 시작됩니다.
이전과는 다른 여러분들이 정말 필요한 강좌를 개설했습니다.
책이 없어도 되구요.
그냥 화면만 보시면 됩니다. ^^
그리고 대치 오르비에서 5월 7일 월요일 따뜻한 날 하루
8시간동안 공도벡 강의가 개설됩니다.
중요한 이론적 배경과 문제 접근하는 방법을 그 날 다 정리해 드릴께요.
문의는 대치 오르비로 해 주세요.
-> 02-3454-0207, 010-6705-0209 <-
이전에 얘기했던 문제를 푸는 자세에 해당하는 좋은 이론을 하나 소개하겠습니다.
수업시간에 제가 늘 강조하고 수학교육과 학생들은 당연히 다 알고 있는
폴리아의 이론입니다.
참!!! 이 이론대로 시험때 접근하면 폭망입니다. ^^
평소에 이렇게 생각들을 하면서 분석하라는 것이죠.
폴리아는 어떤 문제가 좋은 것인가에 대한 얘기도 했지만
그것보다 문제 접근과 해석에 대한 얘기를 소개하겠습니다.
도움이 되셨으면 합니다.
한 번 보죠.
폴리아는 문제접근 단계를 4단계로 설명했습니다.
문제에 대한 이해 - 계획의 작성 - 계획의 실행 - 반성하기
이 순서대로 문제를 해석함에 앞서 가장 중요한 것은
문제를 풀 때까지나 다른 방법이 떠오를 때 까지 선택한 방법을 끝까지
수행하고 충분한 시간을 쓰고도 잘 안 풀릴 때에는
다른 힌트를 찾아 보거나 문제를 잠시 덮어 두는 것도 좋다는 겁니다.
사람 머리라는 게 한계가 있으니까요.
또한, 새로 시작하는 것을 두려워 말고
새로운 방법으로 새로 시작하는 것이 통하는 경우도 많이 있다는 것 잊지 마세요.
이제 폴리아 이론을 소개합니다.
긴 부분이니까 필요한 부분만 스캔하면서 보시길 추천합니다.
요약된 부분을 소개합니다.
1. 문제에 대한 이해
문제를 설명하는 언어적 진술을 이해한다.
문제의 주요 부분, 찾아야 하는 것, 자료, 조건 등을 지적하고 조건을
여러 부분으로 분해한다.
문제의 주요 부분을 주의 깊게 반복하여
여러 측면에서 살펴보고 문제를 명확하게 이해하여야 한다.
이 단계에서 도움이 되는 것들은 다음과 같다.
* 문제의 말을 모두 이해하였는가 ?
* 문제를 자신의 말로 다시 서술할 수 있는가 ?
* 주어진 조건, 자료들은 무엇인가 ?
* 찾아야 하는 것은 무엇인가 ?
* 도달하여야 하는 목표는 무엇인가 ?
* 조건은 만족될 수 있는가 ?
* 정보는 충분한가 ?
* 불필요한 정보는 없는가 ?
* 조건을 여러 부분으로 분해하라. (중요합니다.)
* 그림을 그려보고, 적절한 기호를 붙여보라. (중요합니다.)
2. 계획의 작성
문제 해결의 윤곽을 잡는 단계이고
문제의 답을 얻기 위해 어떤 계산 등이 필요한지
알게 되거나 전체의 그림을 잡는다면, 이를 통해서 계획을 세울 수 있다.
* 전에 비슷한 문제나 약간 변형된 다른 형태로 된 문제를
본 일이 있는지를 살펴보자.
* 정의로 되돌아가서 좀 더 다르게 진술할 수
있는지를 살펴보자.
(2년전 가형 30번이 정말 잘 만든거란거 아시겠죠 ?)
* 관련된 문제로 전에 풀어본 일이 있으며,
그 결과나 방법을 활용할 수 있는지를 살펴보자.
* 어떤 보조 정리를 도입하여 활용할 수 있는지를 살펴본다.
* 제기된 문제를 풀 수 없다면 어느정도 그와 관련된 문제를 찾아보자.
* '자료는 모두 활용했는가?', '조건을 모두 활용했는가 ?'
문제해결을 위해 자주 활용되는 계획들은 다음과 같습니다.
추측하고 점검하기
변수 사용하기
패턴 찾기
리스트 만들기
유사 문제 풀기
그림 이용
도표 이용
직/간접 추론하기
수의 성질 이용하기
동치인 문제로 변환 (경우의 수 문제에 많죠 )
거꾸로 풀기
방정식으로 풀기
공식찾기 (우리에게 제일 친근하게 느껴지는 부분입니다.)
시뮬레이션 돌려보기
모델 사용하기
부분 목표 찾기
3. 계획의 실행
4. 반성하기 (정말 중요합니다.)
완성된 풀이를 검토하고 그 결과와 그 결과에 이르게 된 과정을 다시 생각하고
검사함으로써 얻은 지식을 단단하게 하고 이 후 문제를 해결할 수 있다.
계획을 실행할 때 매 단계를 점검하면서 풀이를
했을지 몰라도 오류는 항상 있을 수 있기에
* 구한 결과는 맞는가 ?
* 구한 결과가 문제의 조건을 만족하는가 ?
* 보다 쉬운 결과는 없는가 ?
* 구한 결과를 보다 일반적인 경우로 확장할 수 있는가 ?
일반적으로 확장할 수 있는가가 문제를 만들고 창작하는 좋은 단계가 되겠죠 ?
어때요 ? 도움이 좀 되셨나요 ?
수능 1등급의 새로운 기준
http://class.orbi.kr/group/154/
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
국어 개무서움 0
볼 때마다 1등급~3등급 룰렛 돌리기함
-
3모 43231 5모 33343 6모 33421 7모 33311 9모 44434...
-
화확영세사 6 35454 9 35451 11 46382 수학이랑 세계사는 풀면 5는...
-
6평 수능 차이 8
제가 본사람중에 차이가장큰 사람이 6평 연세대 약대 >>> 수능 인하대 컴공 이거임
-
다른 건 몰라도 영어가 십헬이었음 특히 내신은.. 그래서 그냥 외우고 쳤는데 2등급...
-
ㅋㅋ
-
'그 해에 처음으로 시험이 시행되는 과목' 예) 14수능 생윤/동사 인데......
-
내신 1받기 ㄹㅇ 개빡센듯 현역때 통으로 문법 다외웠었음
-
고3성적 ㅇㅈ 6
3월 11211 5월 11211 6월21211 7월 11111 9월 31111...
-
2506문학vs2511문학 하면 뭐가 더 어려움? 11
수능 현대소설이 너무 잣밥이라 2506인가 일단 전 2506 20번틀 2511...
-
확통 개때잡 업로드일정이 어떻게 되냐요?? 확통 없는 날에 수1,2 하려고 해서..
-
문제 해설까지해서 올려볼거같습니다. 칼럼도 좋은데 가끔 고난도로 뽑힌 지문들 해설과...
-
현여기 고2인증 2
수능 좃망햇어요
-
언매 가르치듯 영어 가르치는 교과서는 왜 없음? 옛날에는 있었음?
-
29점 백분위 93은 대체 무슨일이 있었던 거지
-
배가빵빵해짐
-
XX법을 정확히 익힘.
-
완전 노베 모고보면 5-6등급 나옴인셉션 패키지 사서 듣고있음근데 주변 애들이 다...
-
수학 공부법 0
수능 집응시 기준 80점인 예비고3이고 실전개념중입니다. 정답률이 얼마정도 되면...
-
초기 형태의 사탐런까지는 오 그런 방법도 있네..! 이런 생각이었는데 요즘 가산점만...
-
이건 저도 예상못함 ㅋㅋㅋㅋㅋㅋ
-
고1 고2 ㅁㅌㅊ?
-
무물 0
오늘까지
-
현역 노베 물생 vs 생지 vs 생+사탐(사문) 중 뭐가 낫나요?? (인공지능,뇌과학 희망)
-
에휴
-
도표2개 개념1개 수능때틀렷는데 나름 도표장인이라고 생각했는데 수능 특유의 떨림과...
-
뉴비가 생겼다 3
파릇파릇한 현여기야
-
션티 수업 근데 1
토 세정반 학생인데 진짜 강의력 개좋으시네 쌤들 보통 템포가 넘 빨라서 놓치거나 넘...
-
진지하게 참고할게요
-
이제 고3되고 이과인데 이미 사탐런은 함 미적은 할라고 햤엇는데 모고나 수능...
-
영어 올리는 법 8
평가원 3인데 감으로 하는 것 같아서 실질적으론 4정도 되는 것 가같아요(듣기는...
-
5모 6모때 화1 35 33 받고 이건 사람이 할게 아니다 싶어서 한번도 공부안한...
-
물1 화1 사문 14
이번에 고3 되는 현역 07입니다 원래 화학을 하다가 모의수능보고 이건 아닌거 같다...
-
박광일쌤 0
이투스 인강 무료로 들을 수 있으면 들어서 손해볼건 없죠? 홀수라는 독학서도 보니깐...
-
오타아닙니다 기 맞아요
-
야식 10
-
나는 작년에 수학 실모를 n회분 풀었다
-
저는 고삼시절 시험 칠 때마다 블로그에 기록했어요 기승전결로 깔끔하게 나눠서 다 정리했죠
-
80년대 동아대 1
80년대 동아대 위상이 현재의 명상가 위상보다 높았음?
-
내신 ㅇㅈ 7
강제로 정시의 길을 걷게 됨..
-
세계가 콜록콜록… 美 올겨울 독감 환자 530만명, 中·인도선 HMPV 급증 1
미국, 중국, 인도 등 해외에서는 여러 전염병이 동시에 유행하고 있다. 코로나,...
-
[공부법 특강] 정공법 총론 2. 국어, 어떻게 공부해야 하는가? 1
이 글을 쓰기에 앞서 기본적인 수능 국어에 대한 이야기를 해보려고 한다. 수능...
-
단과다니면 구할수잇나요?
-
수우미양가 중에서 가!
-
내신3.7 1
이 내신으로 전남대 가능하나요? 안되면 3학년때 몇까지 올려야하나요ㅠㅠ? 광주사람입니다ㅠㅠ
-
역대모고성적 6
고1 3모 152 ( 77 ?? 81) 고1 9모 232 (77 65 88) 고1...
-
이러면 나도 헬스터디 지원했지~ 삼반수생 메디컬보내기 프로젝트로
-
하아..
첫번째 댓글의 주인공이 되어보세요.