모세혈관은 기관일까? 아니면 조직일까?
게시글 주소: https://app.orbi.kr/00016965552
안녕하세요. ‘줄거리가 있는 생명과학’ 저자입니다.
얼마 전에 독자분께서 한 가지 의문점을 제시하셔서 다른 분들과 공유하고자 글을 씁니다.
독자분의 의문점은 아래와 같습니다.
“인강 강사님이 모세혈관은 기관이라고 하셨는데 이 책에서는 모세혈관은 조직이라고 말하고 있네요. 어떻게 해야 하나요?”
결론부터 말씀드리자면 ‘모세혈관은 조직인가? 아니면 기관인가?’라는 지문은 시험에 나올 수 없습니다. 적어도 출제자가 복수정답을 각오하지 않는 이상 이 둘을 구분하는 문제는 내지 못할 것입니다.
시험에 나오는 것만 공부하고 싶으며 구체적인 설명이 필요 없다고 생각하는 학생들은 더 이상 이 글을 볼 필요가 없습니다. 그러나 분명히 애매한 것을 애매한 대로 놔두지 못하는 성격을 가진 학생들에게, 이글은 분명히 도움이 될 것입니다.
사실 이 문제는 우리나라뿐만 아니라 세계적으로 학생들이 골치아파하는 부분이기도 합니다.
우선 이러한 문제가 왜 발생하는지부터 살펴보겠습니다.
혈관은 동맥, 정맥, 모세혈관으로 이루어집니다. 그런대 동맥과 정맥은 ‘기관’으로 구분됩니다. 여기서 우리는 다음과 같은 질문을 해볼 수 있습니다.
“모세혈관은 동맥 그리고 정맥과 연결되어 있다. 그렇다면 모세혈관 역시 기관일까?”
기관과 직접적으로 연결되어 있으므로 당연히 기관이라고 생각하실지 모르겠습니다.
그러나 문제는 ‘기관’이라는 단어의 정의입니다. 기관은 ‘여러 가지 조직이 모여 하나의 공통된 기능을 하는 단위’정도로 정의됩니다. 여기서 중요한 점은 “여러 가지 조직이 모였다.”입니다. 즉, 두 가지 이상의 조직이 모여야 기관이 된다는 의미입니다. 그런대 모세혈관은 한 가지 조직으로만 이루어져 있습니다. 여기서 모순이 발생합니다.
어떤 사람들은 “모세혈관은 혈액을 포함하고 있으므로 두 가지 이상의 조직으로 보아야 한다.”고 말합니다. 그런데 문제는 백혈구가 온몸에 퍼져있다는 것입니다. 따라서 이러한 사람들의 논리에도 모순점이 있습니다.
어떤 사람들은 생물학 교제 등에 서술된 “혈관은 기관에 해당한다.”라는 지문을 따와서 논박하기도 합니다. 그런데 여전히 문제가 있습니다.
예를 들어 이러한 주장은 다음과 같은 삼단논법으로 축약해볼 수 있습니다.
전제1 : 모세혈관은 혈관이다.
전제2 : 혈관은 기관이다.
결론 : 모세혈관은 기관이다.
그런데 이 논리는 다음과 같은 논리와 유사하게 들립니다.
전제1 : 사자의 똥구멍은 사자 몸의 일부이다.
전제2 : 사자는 온몸이 무기이다.
결론 : 사자의 똥구멍은 무기이다.
여기서 더욱 헷갈리게 하는 것은 유럽의 사설기관 등에서 실시하는 시험에서는 ‘모세혈관은 조직이다.’라고 못 막아서 이야기 하는 것입니다. 선생들도 그렇게 가르치는 모양입니다.
도대체 뭐가 옳은 것일까요?
역사적으로 보았을 때, 기관과 조직의 구분방법은 너무나 명확합니다. 왜냐하면 이는 해부학과 조직학을 구분하는 기준과 정확히 일치하기 때문입니다. (교재의 74페이지 참조)
식물의 조직계는 왜 기관이 아닐까요? 기관의 정의로만 따져봤을 때에는 식물의 조직계는 기관으로 불려야 합당합니다. 예컨대 관다발조직계는 물관조직과 체관조직 두 가지로 구성되며, 분명한 하나의 기능을 수행하고 있으므로 “기관”이라고 불려도 크게 무리가 없습니다. 그럼에도 불구하고 기관이라고 부르지 않고 조직계라고 부른 이유는 역사적인 맥락을 이해해야만 알 수 있습니다. (사실 역사적인 맥락 없이도 너무나 간단한 구분기준이 있으며, 독자여러분은 이미 알고 계실 것입니다.)
사실 제가 책에서 조직과 기관을 구분하는 특별한 기준을 제시한 것은 전체적인 맥락에 일관성을 위해서였습니다. 만약 제가 제시한 기준을 없애고 생명과학1의 내용들을 보면 전체적으로 너무 중구난방이라 학생들에게 생명과학이 통으로 암기해야하는 과목으로 보이게 될 것입니다.
분명히 인강 강사님께서 말씀하시는 주장에는 분명한 근거가 있을 거라고 추측합니다. 그러나 저는 인강 강사님의 주장이 옳더라도 그분이 말씀하시는 모세혈관은 조직학 전공자가 말하는 모세혈관이 아니라 해부학 전공자가 말하는 모세혈관일 것이라고 확신합니다. 큰 그림에서 그렇게 될 수밖에 없습니다. (두 용어는 지칭하는 바가 다를 것입니다. 책에서 ‘뼈’를 예로 든 것과 유사합니다.)
직관적인 이해를 위해 두 개의 사진을 비교해봅니다.
-해부학자가 생각하는 모세혈관-
-조직학자가 생각하는 모세혈관-
여기까지 이해한 분들이라면 모세혈관 문제가 왜 시험에 나올 수 없는지 알게 되셨을 것입니다. (다행히 원래 질문자께서는 쪽지를 통해 이야기한 결과 금방 이해를 하셨습니다.) 사실 글을 쓰면서도 답답한 부분이 좀 많은데 이 부분에 관해서는 인강 강사님들끼리도 서로 의견이 다르다는 글을 본적이 있습니다. 아마 학교 선생님이나 대학교 교수님들도 마찬가지일 것입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아니 오히려 지능이 퇴보된다는 거임요 학교 쌤이 예전에 개편 이후 확통하면 수학적...
-
내가 씨발 진짜 2
선심써서 집에서 프린터 하는 시간 아까우니까 n제까지는 돈주고 써줄게 근데 모고는...
-
몸뚱아리 하나로 nba1티어 선수들보다 돈 더범 남자의 성욕이 죄냔말이다!!!!
-
스토리에 아무런 흥미가 안 가서 도저히 못하겠다...노잼
-
한의대 될려나 3
작년에 빵난대 넣었더니 개폭됌 ㅋㅋ 여긴 예비도 ㅈㄴ 안돌던데 점공 보면 말이...
-
롯데백화점 옴 2
-
정작 안 한 수학만 1 뜰 예정이고 국어는...
-
독서론 5분 화작 10분 독서 3지문 각 9분 문학 - 운문 5분, 나머지 3지문...
-
50만원짜리로 샀었는데 생각해보니 대성 : 김승리 션티 임정환 메가 :...
-
6평 9평 2등급이었고 수능 4등급 떴습니다 평소 기출 풀 때는 8분정도 지문...
-
거 우진이형.. 3
책값이 너무 비싼거 아니오!!!!!!!
-
이원준 T 수강생이라 그런 줄 근데 본명 함부로 쓰는 거 아니야... 근데 초6이면...
-
꼭 의대가 아니라도 메디컬 학과가 서강대나 시립대 같은 학교에 생길 수 있나요??...
-
ㅠㅠ 통통을 선택한죄
-
좀 뇌절이라 정말 진심으로 죄송하단 말씀을 먼저 올리고 시작하겠습니다 현재 예비...
-
역체탑 동선 ㄷㄷ
-
홍익대힉교 세종캠퍼스 자연예능 교과전형인데요 제 대학 환산 점수는 70.94이고요...
-
논술 제발 0
시험감독관이 갑자기 논술 시험지를 통째로 잃어버려서 "아이고 죄송합니다. 채점을 할...
-
고2 인증 2
태그
-
한녀의 임신공격이란;;;;
-
수학공통만 봤을땐뇨
-
김범준 수1 1
수1도 좋나요?!
-
공통에70분쓰고?
-
곱법칙이랑 합법칙,중복법칙 이해하는게 은근 첨할땐 난해하고 어려움
-
뭔 다들 생전처음들어보는 마켓에 처올려달래 진짜 씨발 고아새끼들밖에엊ㅅ나
-
이걸 진다는건.. 생각도 못했는데..
-
배고파
-
"한석원" 걍 이거들을빠엔 ebs수능개념1봄
-
초6 인증 12
1. 2021년에 2학년이면 현재 6학년이다. 2. 여기에 2012년생이라고...
-
그것은 조조7ㅔ이였던 것.. 화들짝!
-
경북대학교 전자공학부 모바일공학 전공
-
님들 올수학이 확통1컷 100이여도 통통이 유리해씀? 0
흠. . .
-
언매 미적 물화 97 88 2 47 50 표점이 딸려서 어느정도까지 가능할까요..
-
개념 다시 정리하려는데
-
헉
-
운관은 일이 더 어렵고 일과시간에 공부하기 어렵다는 점, 중발은 그래봤자...
-
마음맞는 사람이 있을지 모르겠음
-
92가 정배겠죠. . . . 확통 쉽긴했어도 22도 까다로웠고 20,21 도...
-
현우진 뉴런 3
뉴런 개강은 12월 말이라고 하던데 그때 싹 다 올려주시는 건가요, 아니면 하니씩...
-
네셔널 퀀티티 퍼스
-
그래도 저는 실채점 성적뜨면 표점 152가 찍혀있을지도 모른다고 믿을래요
-
대학 어디갈수있나요? 이과이고 생기부는 잘채워져있습니다
-
홍대 자전붙으면 홍대자전가서 미대 전공할 의향넘침
-
뭐뇨이
-
재종 vs 독재 1
지방살고 있고 올해 수능 화미생지 43233 인데 재종이 좋을까요 독재가 좋을까요?
-
그려그려 그려그려
-
진짜 간절합니다..
-
보닌 비밀 6
아무도 몰름 왜냐면..... 나도 날 잘 모르니까!
-
공군 군수 0
23학번으로 입학했던 04인데, 원래 군수 생각없다가 사탐 공대가 가능하단 소식을...
모세혈관은 홍해를 가릅니다
이해하는데 한참 걸림.
1+(tan^2)(x) ㅇㄷ
1+(tan^2)(x) = 일단 ㅇㄷ = 와드
1+(tan^2)(x) = sec^2 x
는
1 쁘라스 탄젠트 제곱 은 씨컨트 제곱이라고 읽는게 아니라
일(1) 단(tan^2)(x) 섹.....ㅅ(sec^2 x) 라고 읽는겁니당!
와드는 설명생략 비밀
위에 사진 제주도에 있는 박물관에 전시된 모형인가요?
글세요..;; 그냥 인터넷에서 '모세혈관'으로 검색한 사진입니다.
삼식이님 쪽지 확인부탁드립니다!!~~
확인했습니다.