[박재우] 3월 모의고사 총평
게시글 주소: https://app.orbi.kr/00016468138
안녕하세요
오르비 클래스 수학 강사 박재우입니다.
이번 3월 모의고사 치신 현역 분들 어땠나요 ?
물론 N수 분들도 문제를 풀어 보셨겠지요.
개인적으로는 수학 문제의 난이도 보다는
그 앞의 국어가 1컷이 83이었나 ?
그게 더 충격이었습니다.
이게
N수생들이 합류했을 때는 결과가 어떻게 될지도 궁금하구요
당분간 국어 과목의 중요도가 강세를 유지할 것 같습니다.
국어 선생님들께서는 좋아하실지 싫어 하실지는
잘 모르겠군요. ^^
암튼 수학 한 번 얘기해 보겠습니다.
저는 가형에 국한하여 이번 시험을 총평해 보자면
가장 3월달에 나와야 할 난이도와 주제를 가지고 나왔다고
얘기하고 싶습니다.
중요 주제들도 골고루 나왔고
난이도도 현역들에게 3월에 나와야 할 적당한 난이도였다고 생각합니다.
제가 풀고 나서 해설을 보니 20번, 29번 정도를 제외하고는 거의 비슷하거나 똑 같은
풀이 였습니다.
개인적으로 꼭 다시 한 번 되새겼으면 하는 문제는
18번 독해 문제
20번 삼각함수와 결합된 그래프 추론 문제
29번 경우의 수 나누기
30번 그래프의 대칭성과 정적분의 결합
정말 중요한 주제들입니다.
꼭 피드백 철저히 하구요 모두들
18번은 문제가 어렵다는 것이 아니라 독해는 추론이므로 절대 오버해서
고민할 필요가 없고 차근히 아래쪽 식이 어떻게 나왔을 까 추론하는 문제입니다.
끼워 맞추기 식이어도 관계는 없죠.
제가 드리고 중요한 의미는 2n개 중에 n개를 선택하는 방법의 다양한 해석입니다.
결론을 꼭 기억해 두시길 바랍니다.
20번 문제는 그래프 추론에서 도함수가 차지하는 부분이 매우 중요하고
그래프 추론을 하기 위해 도함수를 학습하는 취지에 아주 잘 맞게 나왔습니다만
그래프 추론에서의 가장 중요한 것은 도함수가 우선시 되어야 하는 것이 아니라
대칭성과 절편의 위치 점근선의 움직임 입니다.
도함수의 성질로 원함수의 대칭성을 논하는 자세도 매우 중요하고
그것을 식으로 해석하기 위한 논리적 바탕을 잡는 것도 매우 중요합니다.
삼각함수의 대칭성과 주어진 변역이 연속적으로 변하는 실수 임을 이용하여
답을 도출할 수도 있지만
철저하게 가항과 나항이 주어진 이유를 생각하고 우함수 기함수 성질을
이용하려는 시도가 더욱 더 중요하고
그렇기 때문에 치환적분은 더더욱 중요한 것이 됩니다.
29번은 분할이나 중복조합 써도 되지만 그냥 저처럼 하나 하나 세는 것이
더 좋다고 생각하구요. 그 세는 것이 어떤 방법을 동원하면 좋은 건지
연습이 꼭 필요합니다.
실제 시험장에 가면 기억 나는 거는 하나하나 세는 것 이외에는 . . . . . . .
30번은
그래프의 대칭성을 이용한 좋은 문제입니다.
항상 그래프 추론의 1번은 대칭성 파악입니다.
f(a-x)=f(a+x) 또는 f(x)=f(2a-x) 먼지 아시죠 ?
복잡하지 않은 좋은 예를 들어 차함수 적분 까지 적용한 좋은 주제의
좋은 문제라 생각합니다.
폄하할 이유가 없는 작년 3월 보다 훨 좋아진 문제인것은 확실하다고
생각하구요.
꼭 피드백 하시길 바랍니다.
제 해설에는 계산 과정을 촬영시간 때문에 생략한게 부분
나오는 데
양해 부탁드립니다.
반드시 이유를 철저히 분석해서 이번 주제들은 꼭 알고 가도록 합시다.
이루고자 하는 자는 무엇을 하던 꼭 이룰 수 있답니다.
힘 내시구요......
디른 분들이랑 비교해 허접하지만 해설 올려 봅니다.
29번을 제외하고는 아마 교육청 해설이랑 별.........
1등급의 개로운 기준
http://class.orbi.kr/group/154/
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
부산은 어떤감요?
-
얼부기 3
-
아는 형 연대 사회 나와서 삼일회계 갔는데 가능한가 연대 사회 커리어면 ㅇㅇ.??
-
메가스터디 vs 대성마이맥 (패스)
-
궁금합니다
-
누비 질문! 0
이해원 n제 시즌2 매년 전문항 신규제작인가요?
-
거의 러시아급 독서실 못가겠네 ㅋㅋ
-
아하
-
비문학은 이미 문제 먼저로 체제 잡고 기출 풀면 평균 1개씩 틀리는데 문학은 진짜...
-
이원준 김상훈 0
김동욱쌤 수국김 끝내고 일클 듣는중인데 문학이 너무 아닌거 같아서 아예 바꾸려고...
-
손가락이 개잘려버리네
-
겨울방학때 수1 수2 미적 공부 비중을 어떻게 두는게 젤 좋을까요?? 정시고...
-
어떤 복소수의 역수는 원래의 복소수의 켤레복소수 맞나욤??
-
베르테르 11번 푸리 11
쉬우네요
-
근데 먼가 제설 한 번 더 할거 같긴한데..
-
눈 미친거같은데 8
독서실 가기싫네 눈 아직도 펑펑 오는중
-
수특 문학,독서사서 한번이라도 다 풀어본적 없으면 개추ㅋㅋ 2
매년 사도 풀어본적이 없음ㅋㅋ 걍 올해는 안사려고 김승리 KBS만 하게
-
안녕하세요 '지구과학 최단기간 고정 1등급만들기' 저자 발로탱이입니다. 지난 1년간...
-
최고 점수가 5점입니다.. 6점 이상은 재능의 영역일까요? 뭐가 문제일까유 ㅠㅠ
-
이감 팩트폭력 ㅆㅅㅌㅊ 10
"시험지의 형식만 보았을 때는 9월 모의평가에 가까운 난도로 보기 쉽지만, 이는...
-
수분감 인강 0
-
대학커뮤니티 노크에서 선발한 경희대 선배가 오르비에 있는 예비 경희대학생, 경희대...
-
사탐런으로
-
왜케 빨리깻지 1
음..
-
뱃지 5
24일에 신청했는데 원래 늦나??ㅜ
-
ㅈㄱㄴ
-
오늘 하루도 화이팅
-
피코햄 웃겼던거 12
논란 때 오르비에 입장문 발표할 때마다 계속 맞춤법 틀렸음
-
이 모양 아버지 이 모씨, “수능 사탐은 공부할 필요가 없다”발언… 직접 세계사 풀어보니 ‘5등급’ 24
한 달 공부해서 1찍겠다고(정치x, 등급o) 공약거심 ㄷㄷ
-
킬러배제 ㅈㄴ 잘한거임 공교육에서 가르치는거론 절대 못푸는 근사 유전 양론 역학...
-
대전 3월 더프 모의고사 외부생 어디서 볼 수 있을까요? 0
안녕하세요 대전에 3월 더프 신청할 수 있는 곳 있나요? 그리고 3월 더프 외부생은...
-
그냥 2세트에서 자꾸 한번씩 실험실 열어보는거 볼때마다 킹받긴함
-
그래도 응시자수 3위과목인데 생윤보단 당연히 높겠지만 응시자수 윤사 다음순위인...
-
재수하고 싶어짐ㅋㅋ
-
약 10일 후 내 운명이 결정된다
-
슬슬 잘까 0
하하
-
안녕하세요. 이제 고3 올라가는데요, 평소에 수학을 잘 못하는지라 한석원 선생님...
-
공부하러 1
갈게
-
얼부기 3
얼부기얼북 얼북어 얼북스딱스 얼부르크 얼부가우가 얼비기얼부거 얼부가티 얼부기온앤온
-
289일 남았네 6
이제 공부해야지
-
밖에 차에는 눈이 쌓여있음.. 나혼자 이세계 갔다온거야..?
-
와우 0
-
잇올이나 러셀 이런데 말구 동네에 있는거... 안간다는거 당일에말하는거 민폐임?
-
니야호 0
귀여워
-
ㅔ 0
-
물화, 화생, 물생 하다가 도저히 각이 안보이면 과탐 하나를 지구로 바꿨음. 지금...
-
얼버기 0
-
퇴근하고싶다 4
1시간만 버티면 퇴근이야
-
수능 끝나니깐 2
수능 수학이 재밌네..
감사합니다 선생님 ㅠㅠ 좋은 강의 잘 듣겠습니당!!
아 ㅋㅋ
화이팅입니다
열심히 해보죠
20번 풀이 개인적으로 엄청별로인거같아요
ㄴ ㄷ 모두 저렇게 오래 끌 풀이가 아닌거같아요 현 모선생님 이 모 선생님 한 모 선생님모두 1분30초남짓 걸렸던거같아요
네 분명 빨리 풀수있고 설명에 삼각함수 대칭성과 도함수의 그래프 성질을 이용해 저도 푼 것이 영상에 나옵니다 짧게 끝나죠
근데 영상에서 보면 그 풀이 후에 여러 문제에서 볼 수 있는 해석 형태를 공통적으로 해석할 수 있는 부분을 상세하게 설명했을 뿐입니다 그 raw 한 풀이도 제 개인적으로는 범용성에서 굉장히 중요하기에 설명했습니다